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Linear Independence

Definition
Let S = {~x1,~x2, . . . ,~xk} be a subset of Rn. The set S is linearly independent
(or simply independent) if the following condition is satisfied:

t1~x1 + t2~x2 + · · ·+ tk~xk = ~0n ⇒ t1 = t2 = · · · = tk = 0

i.e., the only linear combination of vectors of S that vanishes (is equal to
the zero vector) is the trivial one (all coefficients equal to zero).
A set that is not linearly independent is called dependent.
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{~x1,~x2, · · · ,~xk} t1~x1 + t2~x2 + · · ·+ tk~xk = ~0n

Linearly Independent ⇐⇒ Trivial Solution

Linearly Dependent ⇐⇒ Nontrivial Solution



Example

Is S =


 −1

0
1

 ,

 1
1
1

 ,

 1
3
5

 linearly independent?

Suppose that a linear combination of these vectors vanishes, i.e., there exist
a, b, c ∈ R so that

a

 −1
0
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+ b

 1
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+ c

 1
3
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 =

 0
0
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Example (continued)
Solve the homogeneous system of three equation in three variables:

 −1 1 1 0
0 1 3 0
1 1 5 0

 → · · · →

 1 0 2 0
0 1 3 0
0 0 0 0

 .

The system has solutions a = −2r, b = −3r, c = r for r ∈ R, so it has
nontrivial solutions. Therefore S is dependent. In particular, when r = 1 we
see that

−2

 −1
0
1

− 3

 1
1
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 1
3
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0
0

 ,

i.e., this is a nontrivial linear combination that vanishes.



Example (continued)
Solve the homogeneous system of three equation in three variables: −1 1 1 0

0 1 3 0
1 1 5 0

 → · · · →

 1 0 2 0
0 1 3 0
0 0 0 0

 .

The system has solutions a = −2r, b = −3r, c = r for r ∈ R, so it has
nontrivial solutions. Therefore S is dependent.

In particular, when r = 1 we
see that

−2

 −1
0
1

− 3

 1
1
1

+

 1
3
5

 =

 0
0
0

 ,

i.e., this is a nontrivial linear combination that vanishes.



Example (continued)
Solve the homogeneous system of three equation in three variables: −1 1 1 0

0 1 3 0
1 1 5 0

 → · · · →

 1 0 2 0
0 1 3 0
0 0 0 0

 .

The system has solutions a = −2r, b = −3r, c = r for r ∈ R, so it has
nontrivial solutions. Therefore S is dependent. In particular, when r = 1 we
see that

−2

 −1
0
1

− 3

 1
1
1

+

 1
3
5

 =

 0
0
0

 ,

i.e., this is a nontrivial linear combination that vanishes.



Example
Consider the set {~e1,~e2, . . . ,~en} ⊆ Rn, and suppose t1, t2, . . . , tn ∈ R are
such that

t1~e1 + t2~e2 + · · · tn~en = ~0n.

Since

t1~e1 + t2~e2 + · · · tn~en =


t1
t2
...

tn

 ,

the only linear combination that vanishes is the trivial one, i.e., the one with
t1 = t2 = · · · = tn = 0. Therefore, {~e1,~e2, . . . ,~en} is linearly independent.



Problem

Let {~u,~v, ~w} be an independent subset of Rn. Is { ~u + v, 2 ~u + w,~v − 5~w}
linearly independent?

Solution

In order to show the { ~u + v, 2 ~u + w,~v − 5~w} is linearly independent, we
need to show that

a(~u + ~v) + b(2~u + ~w) + c(~v − 5~w) = ~0n ⇒ a = b = c = 0.

m

(a + 2b)~u + (a + c)~v + (b − 5c)~w = ~0n.

because {~u,~v, ~w} is independent ⇓

a + 2b = 0

a + c = 0

b − 5c = 0.

⇓

a = b = c = 0
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Problem

Let X ⊆ Rn and suppose that ~0n ∈ X. Show that X linearly dependent.

Solution

Let X = { ~x1, ~x2, . . . , ~xk} for some k ≥ 1, and suppose ~x1 = ~0n. Then

1~x1 + 0~x2 + · · ·+ 0~xk = 1~0 + 0~x2 + · · ·+ 0~xk = ~0,

i.e., we have found a nontrivial linear combination of the vectors of X that
vanishes. Therefore, X is dependent. �
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Example
Let ~u ∈ Rn and let S = {~u}.

1. If ~u = ~0n, then S is dependent (see the previous Problem).
2. If ~u 6= ~0n, then S is independent: if t~u = ~0n for some t ∈ R, then t = 0.

As a consequence,

S = {~u} is independent ⇐⇒ ~u 6= ~0n



Example

A =


0 1 −1 2 5 1
0 0 1 −3 0 1
0 0 0 0 1 −2
0 0 0 0 0 0

 is a row-echelon matrix.

Treat the

nonzero rows of A as transposes of vectors in R6:

~u1 =


0
1

−1
2
5
1

 , ~u2 =


0
0
1

−3
0
1

 , ~u3 =


0
0
0
0
1

−2

 ,

and suppose that a~u1 + b~u2 + c~u3 = ~06 for some a, b, c ∈ R.
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Example (continued)
This results in a system of six equations in three variables, whose
augmented matrix is 

0 0 0 0
1 0 0 0

−1 1 0 0
2 −3 0 0
5 0 1 0
1 1 −2 0



The solution to the system is easily determined to be a = b = c = 0, so the
set {~u1, ~u2, ~u3} is independent. Hence, nonzero rows of A are independent.

Remark
In general, the nonzero rows of any row-echelon matrix form an
independent set of (row) vectors.
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Theorem
Let U = {~v1,~v2, . . . ,~vk} ⊆ Rn be an independent set. Then any vector
~x ∈ span(U) has a unique representation as a linear combination of vectors
of U.

Proof.
Suppose that there is a vector ~x ∈ span(U) such that

~x = s1~v1 + s2~v2 + · · ·+ sk~vk, for some s1, s2, . . . , sk ∈ R, and
~x = t1~v1 + t2~v2 + · · ·+ tk~vk, for some t1, t2, . . . , tk ∈ R.

⇓
~0n = ~x − ~x = (s1~v1 + s2~v2 + · · ·+ sk~vk)− (t1~v1 + t2~v2 + · · ·+ tk~vk)

= (s1 − t1)~v1 + (s2 − t2)~v2 + · · ·+ (sk − tk)~vk.

U is independent ⇓

s1 − t1 = 0, s2 − t2 = 0, · · · , sk − tk = 0

m

s1 = t1, s2 = t2, · · · , sk = tk.
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Two Geometric Examples

Problem
Suppose that ~u and ~v are nonzero vectors in R3. Prove that {~u,~v} is
dependent if and only if ~u and ~v are parallel.

Solution

(⇒) If {~u,~v} is dependent, then there exist a, b ∈ R so that a~u + b~v = ~03
with a and b not both zero. By symmetry, we may assume that a 6= 0.
Then ~u = −b

a~v, so ~u and ~v are scalar multiples of each other, i.e., ~u and ~v
are parallel.

(⇐) Conversely, if ~u and ~v are parallel, then there exists a t ∈ R, t 6= 0, so
that ~u = t~v. Thus ~u − t~v = ~03, so we have a nontrivial linear combination
of ~u and ~v that vanishes. Therefore, {~u,~v} is dependent. �
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Problem
Suppose that ~u,~v and ~w are nonzero vectors in R3, and that {~v, ~w} is
independent. Prove that {~u,~v, ~w} is independent if and only if
~u 6∈ span{~v, ~w}.

Solution
(⇒) If ~u ∈ span{~v, ~w}, then there exist a,b ∈ R so that ~u = a~v + b~w. This
implies that ~u − a~v − b~w = ~03, so ~u − a~v − b~w is a nontrivial linear
combination of {~u,~v, ~w} that vanishes, and thus {~u,~v, ~w} is dependent.

(⇐) Now suppose that ~u 6∈ span{~v, ~w}, and suppose that there exist
a, b, c ∈ R such that a~u + b~v + c~w = ~03. If a 6= 0, then ~u = −b

a~v − c
a ~w, and

~u ∈ span{~v, ~w}, a contradiction. Therefore, a = 0, implying that
b~v + c~w = ~03. Since {~v, ~w} is independent, b = c = 0, and thus
a = b = c = 0, i.e., the only linear combination of ~u,~v and ~w that vanishes
is the trivial one. Therefore, {~u,~v, ~w} is independent. �
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Independence, spanning, and matrices

Theorem
Suppose A is an m × n matrix with columns ~c1,~c2, . . . ,~cn ∈ Rm. Then

1. {~c1,~c2, . . . ,~cn} is independent if and only if A~x = ~0m with ~x ∈ Rn

implies ~x = ~0n.
2. Rm = span{~c1,~c2, . . . ,~cn} if and only if A~x = ~b has a solution for every

~b ∈ Rm.



Independence, spanning, and matrices

Theorem
Suppose A is an m × n matrix with columns ~c1,~c2, . . . ,~cn ∈ Rm. Then

1. {~c1,~c2, . . . ,~cn} is independent if and only if A~x = ~0m with ~x ∈ Rn

implies ~x = ~0n.
2. Rm = span{~c1,~c2, . . . ,~cn} if and only if A~x = ~b has a solution for every

~b ∈ Rm.



Problem
Let ~x1,~x2, . . . ,~xk ∈ Rn.

1. Are ~x1,~x2, . . . ,~xk linearly independent?
2. Do ~x1,~x2, . . . ,~xk span Rn?

Solution
To answer both question, simply let A be a matrix whose columns are the
vectors ~x1,~x2, . . . ,~xk ∈ Rn. Find R, a row-echelon form of A.

1. “yes” if and only if each column of R has a leading one.
2. “yes” if and only if each row of R has a leading one.
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Problem (first seen earlier)

Let ~u1 =


1

−1
1

−1

 , ~u2 =


−1
1
1
1

 , ~u3 =


1

−1
−1
1

 , ~u4 =


1

−1
1
1

.

Show that span{~u1, ~u2, ~u3, ~u4} 6= R4.

Solution

Let A =
[
~u1 ~u2 ~u3 ~u4

]
. Apply row operations to get R, a

row-echelon form of A:
1 −1 1 1

−1 1 −1 −1
1 1 −1 1

−1 1 1 1

 →


1 −1 1 1
0 1 −1 0
0 0 1 1
0 0 0 0


Since the last row of R consists only of zeros, R~x = ~e4 has no solution
~x ∈ R4, implying that there is a ~b ∈ R4 so that A~x = ~b has no solution
~x ∈ R4. By previous Theorem, R4 6= span{~u1, ~u2, ~u3, ~u4}. �
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Theorem
Let A be an n × n matrix. The following are equivalent.

1. A is invertible.
2. The columns of A are independent.
3. The columns of A span Rn.
4. The rows of A are independent, i.e., the columns of AT are

independent.
5. The rows of A span the set of all 1× n rows, i.e., the columns of AT

span Rn.
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By the previous Theorem, the columns of A span R4 if and only if A is
invertible. Since det(A) = 0 (row 2 is (−1) times row 1), A is not invertible,
and thus {~u1, ~u2, ~u3, ~u4} does not span R4. �
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Problem
Let

~u =

 1
−1
0

 ,~v =

 3
2

−1

 , ~w =

 3
5

−2

 .

Is {~u,~v, ~w} independent?

Solution

Let A =
[
~u ~v ~w

]
. From the previous Theorem, {~u,~v, ~w} is

independent if and only if A is invertible.

Since

det(A) = det

 1 3 3
−1 2 5
0 −1 −2

 = −2,

and −2 6= 0, A is invertible, and therefore {~u,~v, ~w} is an independent
subset of R3. �

Remark
Notice that {~u,~v, ~w} also spans R3.
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Bases and Dimension

Theorem (Fundamental Theorem)
Let U be a subspace of Rn that is spanned by m vectors. If U contains a
subset of k linearly independent vectors, then k ≤ m.

Definition
Let U be a subspace of Rn. A set {~x1,~x2, . . . ,~xm} is a basis of U if

1. {~x1,~x2, . . . ,~xm} is linearly independent;
2. U = span{~x1,~x2, . . . ,~xm}.

As a consequence of all this, if {~x1,~x2, . . . ,~xm} is a basis of a subspace U,
then every ~u ∈ U has a unique representation as a linear combination of the
vectors ~xi, 1 ≤ i ≤ m.
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Example
The subset {~e1,~e2, . . . ,~en} is a basis of Rn, called the standard basis of Rn.
(We’ve already seen that {~e1,~e2, . . . ,~en} is linearly independent and that
Rn = span{~e1,~e2, . . . ,~en}.)

Example

In a previous problem, we saw that R4 = span(S) where

S =




1
1
1
1

 ,


0
1
1
1

 ,


0
0
1
1

 ,


0
0
0
1


 .

S is also linearly independent (prove this). Therefore, S is a basis of R4.
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Theorem (Invariance Theorem)

If {~x1,~x2, . . . ,~xm} and {~y1,~y2, . . . ,~yk} are bases of a subspace U of Rn,
then m = k.

Proof.
Let S = {~x1,~x2, . . . ,~xm} and T = {~y1,~y2, . . . ,~yk}. Since S spans U and T is
independent, it follows from the Fundamental Theorem that k ≤ m. Also,
since T spans U and S is independent, it follows from the Fundamental
Theorem that m ≤ k. Since k ≤ m and m ≤ k, k = m. �

Definition
The dimension of a subspace U of Rn is the number of vectors in any basis
of U, and is denoted dim(U).
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Problem

In Rn, what is the dimension of the subspace {~0n}?

Solution
The only basis of the zero subspace is the empty set, ∅:
(i) the empty set is (trivially) independent, and
(ii) any linear combination of no vectors is the zero vector.
Therefore, the zero subspace has dimension zero.

Example
Since {~e1,~e2, . . . ,~en} is a basis of Rn, Rn has dimension n.
This is why the Cartesian plane, R2, is called 2-dimensional, and R3 is
called 3-dimensional.
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Problem
Let

U =




a
b
c
d

 ∈ R4

∣∣∣∣∣∣∣∣ a − b = d − c

 .

Show that U is a subspace of R4, find a basis of U, and find dim(U).



Solution
The condition a − b = d − c is equivalent to the condition a = b − c + d, so
we may write

U =




b − c + d
b
c
d

 ∈ R4

 =

b


1
1
0
0

+ c


−1
0
1
0

+ d


1
0
0
1


∣∣∣∣∣∣∣∣ b, c,d ∈ R



This shows that U is a subspace of R4, since U = span{~x1,~x2,~x3} where

~x1 =
[
1 1 0 0

]T
~x2 =

[
−1 0 1 0

]T
~x3 =

[
1 0 0 1

]T
.
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Solution (continued)
Furthermore, 


1
1
0
0

 ,


−1
0
1
0

 ,


1
0
0
1




is linearly independent, as can be seen by taking the reduced row-echelon
(RRE) form of the matrix whose columns are ~x1,~x2 and ~x3.

1 −1 1
1 0 0
0 1 0
0 0 1

 →


1 0 0
0 1 0
0 0 1
0 0 0



Since every column of the RRE matrix has a leading one, the columns are
linearly independent.

Therefore {~x1,~x2,~x3} is linearly independent and spans U, so is a basis of
U, and hence U has dimension three. �
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Example (Important!)

Suppose that B = {~x1,~x2, . . . ,~xn} is a basis of Rn and that A is an n × n
invertible matrix. Let D = {A~x1,A~x2, . . . ,A~xn}, and let

X =
[
~x1 ~x2 · · · ~xn

]
.

Since B is a basis of Rn, B is independent (also a spanning set of Rn); thus
X is invertible. Now, because A and X are invertible, so is

AX =
[

A~x1 A~x2 · · · A~xn
]
.

Therefore, the columns of AX are independent and span Rn. Since the
columns of AX are the vectors of D, D is a basis of Rn.
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Finding Bases and Dimension

Theorem
Let U be a subspace of Rn. Then

1. U has a basis, and dim(U) ≤ n.
2. Any independent set of U can be extended (by adding vectors) to a

basis of U.
3. Any spanning set of U can be cut down (by deleting vectors) to a basis

of U.
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Example
Previously, we showed that

U =




a
b
c
d

 ∈ R4

∣∣∣∣∣∣∣∣ a − b = d − c


is a subspace of R4, and that dim(U) = 3.

Also, it is easy to verify that

S =




1
1
1
1

 ,


2
3
3
2


 ,

is an independent subset of U.

By a previous Theorem, S can be extended to a basis of U. To do so, find a
vector in U that is not in span(S).
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Example (continued) 
1 2 ?
1 3 ?
1 3 ?
1 2 ?




1 2 1
1 3 0
1 3 −1
1 2 0

 →


1 0 0
0 1 0
0 0 1
0 0 0


Therefore, S can be extended to the basis


1
1
1
1

 ,


2
3
3
2

 ,


1
0

−1
0


 of U.
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Problem
Let

~u1 =


−1
2
1
0

 , ~u2 =


2
0
3

−1

 , ~u3 =


4
4

11
−3

 , ~u4 =


3

−2
2

−1

 ,

and let U = span{~u1, ~u2, ~u3, ~u4}. Find a basis of U that is a subset of
{~u1, ~u2, ~u3, ~u4}, and find dim(U).

Solution

Suppose a1~u1 + a2~u2 + a3~u3 + a4~u4 = ~0. Solve for a1, a2, a3, a4; if some
ai 6= 0, 1 ≤ i ≤ 4, then ~ui can be removed from the set {~u1, ~u2, ~u3, ~u4}, and
the resulting set still spans U. Repeat this on the resulting set until a
linearly independent set is obtained.

One solution is B = {~u1, ~u2}. Then U = span(B) and B is linearly
independent. Therefore B is a basis of U, and thus dim(U) = 2. �

Remark
In the next section, we will learn an efficient technique for solving this type
of problem.
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Theorem
Let U be a subspace of Rn with dim(U) = m, and let B = {~x1,~x2, . . . ,~xm}
be a subset of U. Then B is linearly independent if and only if B spans U.

Proof.
(⇒) Suppose B is linearly independent. If span(B) 6= U, then extend B to a
basis B′ of U by adding appropriate vectors from U. Then B′ is a basis of
size more than m = dim(U), which is impossible. Therefore, span(B) = U,
and hence B is a basis of U.

(⇐) Conversely, suppose span(B) = U. If B is not linearly independent,
then cut B down to a basis B′ of U by deleting appropriate vectors. But
then B′ is a basis of size less than m = dim(U), which is impossible.
Therefore, B is linearly independent, and hence B is a basis of U. �
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Remark
Let U be a subspace of Rn and suppose B ⊆ U.
I If B spans U and |B| = dim(U), then B is also independent, and hence

B is a basis of U.
I If B is independent and |B| = dim(U), then B also spans U, and hence

B is a basis of U.

Therefore, if |B| = dim(U), in order to prove that B is a basis, it is
sufficient to prove either of the following two statements:

1. B is independent
2. B spans U



Theorem
Let U and W be subspace of Rn, and suppose that U ⊆ W. Then

1. dim(U) ≤ dim(W).
2. If dim(U) = dim(W), then U = W.

Proof.
Let dim(W) = k, and let B be a basis of U.

1. If dim(U) > k, then B is a subset of independent vectors of W with
|B| = dim(U) > k, which contradicts the Fundamental Theorem.

2. If dim(U) = dim(W), then B is an independent subset of W containing
k = dim(W) vectors. Therefore, B spans W, so B is a basis of W, and
U = span(B) = W.
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Example

Any subspace U of R2, other than {~02} and R2 itself, must have dimension
one, and thus has a basis consisting of one nonzero vector, say ~u. Thus
U = span{~u}, and hence is a line through the origin.

Example

Any subspace U of R3, other than {~03} and R3 itself, must have dimension
one or two. If dim(U) = 1, then, as in the previous example, U is a line
through the origin. Otherwise dim(U) = 2, and U has a basis consisting of
two linearly independent vectors, say ~u and ~v. Thus U = span{~u,~v}, and
hence is a plane through the origin.
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