Math 221: LINEAR ALGEBRA

Chapter 5. Vector Space \mathbb{R}^n §5-2. Independence and Dimension

Le Chen¹

Emory University, 2021 Spring

(last updated on 01/25/2021)

Geometric Examples

Independence, spanning, and matrices

Bases and Dimension

Finding Bases and Dimension

Geometric Examples

Independence, spanning, and matrices

Bases and Dimension

Finding Bases and Dimension

Definition

Let $S = {\vec{x}_1, \vec{x}_2, ..., \vec{x}_k}$ be a subset of \mathbb{R}^n . The set S is linearly independent (or simply independent) if the following condition is satisfied:

 $t_1\vec{x}_1+t_2\vec{x}_2+\dots+t_k\vec{x}_k=\vec{0}_n \quad \Rightarrow \quad t_1=t_2=\dots=t_k=0$

i.e., the only linear combination of vectors of S that vanishes (is equal to the zero vector) is the trivial one (all coefficients equal to zero). A set that is not linearly independent is called dependent.

$$\{\vec{x}_1, \vec{x}_2, \cdots, \vec{x}_k\} \qquad \qquad t_1 \vec{x}_1 + t_2 \vec{x}_2 + \cdots + t_k \vec{x}_k = \vec{0}_n$$

Linearly Independent \iff

Trivial Solution

Linearly Dependent \iff Nontrivial Solution

Is
$$S = \left\{ \begin{bmatrix} -1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\3\\5 \end{bmatrix} \right\}$$
 linearly independent?

Is S =
$$\left\{ \begin{bmatrix} -1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\3\\5 \end{bmatrix} \right\}$$
 linearly independent?

Suppose that a linear combination of these vectors vanishes, i.e., there exist a, b, c \in \mathbb{R} so that

$$\mathbf{a} \begin{bmatrix} -1\\ 0\\ 1 \end{bmatrix} + \mathbf{b} \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} + \mathbf{c} \begin{bmatrix} 1\\ 3\\ 5 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$$

Solve the homogeneous system of three equation in three variables:

Solve the homogeneous system of three equation in three variables:

$$\begin{bmatrix} -1 & 1 & 1 & | & 0 \\ 0 & 1 & 3 & | & 0 \\ 1 & 1 & 5 & | & 0 \end{bmatrix} \to \dots \to \begin{bmatrix} 1 & 0 & 2 & | & 0 \\ 0 & 1 & 3 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

The system has solutions a = -2r, b = -3r, c = r for $r \in \mathbb{R}$, so it has nontrivial solutions. Therefore S is dependent.

Solve the homogeneous system of three equation in three variables:

$$\begin{bmatrix} -1 & 1 & 1 & | & 0 \\ 0 & 1 & 3 & 0 \\ 1 & 1 & 5 & | & 0 \end{bmatrix} \to \dots \to \begin{bmatrix} 1 & 0 & 2 & | & 0 \\ 0 & 1 & 3 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

The system has solutions a = -2r, b = -3r, c = r for $r \in \mathbb{R}$, so it has nontrivial solutions. Therefore S is dependent. In particular, when r = 1 we see that

$$-2\begin{bmatrix} -1\\0\\1\end{bmatrix} -3\begin{bmatrix} 1\\1\\1\end{bmatrix} + \begin{bmatrix} 1\\3\\5\end{bmatrix} = \begin{bmatrix} 0\\0\\0\end{bmatrix}$$

i.e., this is a nontrivial linear combination that vanishes.

Consider the set $\{\vec{e}_1,\vec{e}_2,\ldots,\vec{e}_n\}\subseteq\mathbb{R}^n,$ and suppose $t_1,t_2,\ldots,t_n\in\mathbb{R}$ are such that

$$t_1\vec{e}_1 + t_2\vec{e}_2 + \cdots t_n\vec{e}_n = \vec{0}_n$$

Since

$$t_1\vec{e}_1 + t_2\vec{e}_2 + \cdots t_n\vec{e}_n = \begin{bmatrix} t_1 \\ t_2 \\ \vdots \\ t_n \end{bmatrix},$$

the only linear combination that vanishes is the trivial one, i.e., the one with $t_1 = t_2 = \cdots = t_n = 0$. Therefore, $\{\vec{e}_1, \vec{e}_2, \ldots, \vec{e}_n\}$ is linearly independent.

$\operatorname{Problem}$

Let $\{\vec{u}, \vec{v}, \vec{w}\}$ be an independent subset of \mathbb{R}^n . Is $\{u \neq v, 2u \neq w, \vec{v} - 5\vec{w}\}$ linearly independent?

Let $\{\vec{u}, \vec{v}, \vec{w}\}$ be an independent subset of \mathbb{R}^n . Is $\{u \neq v, 2u \neq w, \vec{v} - 5\vec{w}\}$ linearly independent?

Solution

In order to show the $\{u \vec{+} v, 2u \vec{+} w, \vec{v} - 5\vec{w}\}$ is linearly independent, we need to show that

 $a(\vec{u}+\vec{v})+b(2\vec{u}+\vec{w})+c(\vec{v}-5\vec{w})=\vec{0}_n \quad \Rightarrow \quad a=b=c=0.$

Let $\{\vec{u}, \vec{v}, \vec{w}\}$ be an independent subset of \mathbb{R}^n . Is $\{u \neq v, 2u \neq w, \vec{v} - 5\vec{w}\}$ linearly independent?

Solution

In order to show the $\{u \vec{+}\,v, 2u \vec{+}\,w, \vec{v}-5\vec{w}\}$ is linearly independent, we need to show that

Let $\{\vec{u}, \vec{v}, \vec{w}\}$ be an independent subset of \mathbb{R}^n . Is $\{u \neq v, 2u \neq w, \vec{v} - 5\vec{w}\}$ linearly independent?

Solution

In order to show the $\{u \vec{+} v, 2u \vec{+} w, \vec{v} - 5\vec{w}\}$ is linearly independent, we need to show that

because $\{\vec{u}, \vec{v}, \vec{w}\}$ is independent

$$a + 2b = 0$$

 $a + c = 0$
 $b - 5c = 0.$

Let $\{\vec{u}, \vec{v}, \vec{w}\}$ be an independent subset of \mathbb{R}^n . Is $\{u \neq v, 2u \neq w, \vec{v} - 5\vec{w}\}$ linearly independent?

Solution

In order to show the $\{u \vec{+} v, 2u \vec{+} w, \vec{v} - 5\vec{w}\}$ is linearly independent, we need to show that

because $\{\vec{u}, \vec{v}, \vec{w}\}$ is independent

$$a + 2b = 0$$

$$a + c = 0$$

$$b - 5c = 0.$$

$$\downarrow$$

$$a = b = c = 0$$

Let $X \subseteq \mathbb{R}^n$ and suppose that $\vec{0}_n \in X$. Show that X linearly dependent.

Let $X \subseteq \mathbb{R}^n$ and suppose that $\vec{0}_n \in X$. Show that X linearly dependent.

Solution

Let $X=\{\vec{x_1},\vec{x_2},\ldots,\vec{x_k}\}$ for some $k\geq 1,$ and suppose $\vec{x}_1=\vec{0_n}.$ Then

$$1\vec{x}_1 + 0\vec{x}_2 + \dots + 0\vec{x}_k = 1\vec{0} + 0\vec{x}_2 + \dots + 0\vec{x}_k = \vec{0},$$

i.e., we have found a nontrivial linear combination of the vectors of X that vanishes. Therefore, X is dependent.

Let $\vec{u} \in \mathbb{R}^n$ and let $S = {\vec{u}}$. 1. If $\vec{u} = \vec{0}_n$, then S is dependent (see the previous Problem). 2. If $\vec{u} \neq \vec{0}_n$, then S is independent: if $t\vec{u} = \vec{0}_n$ for some $t \in \mathbb{R}$, then t = 0. As a consequence,

$$\mathrm{S} = \{ ec{\mathrm{u}} \} ext{ is independent} \qquad \Longleftrightarrow \qquad ec{\mathrm{u}}
eq ec{\mathrm{0}}_{\mathrm{n}}$$

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & -1 & 2 & 5 & 1 \\ 0 & 0 & 1 & -3 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 is a row-echelon matrix

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & -1 & 2 & 5 & 1 \\ 0 & 0 & 1 & -3 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 is a row-echelon matrix. Treat the

nonzero rows of A as transposes of vectors in \mathbb{R}^6 :

$$\vec{\mathbf{u}}_1 = \begin{bmatrix} 0\\1\\-1\\2\\5\\1 \end{bmatrix}, \quad \vec{\mathbf{u}}_2 = \begin{bmatrix} 0\\0\\1\\-3\\0\\1 \end{bmatrix}, \quad \vec{\mathbf{u}}_3 = \begin{bmatrix} 0\\0\\0\\0\\1\\-2 \end{bmatrix},$$

and suppose that $a\vec{u}_1 + b\vec{u}_2 + c\vec{u}_3 = \vec{0}_6$ for some $a, b, c \in \mathbb{R}$.

This results in a system of six equations in three variables, whose augmented matrix is

[0	0	0	$\left 0 \right $
1	0	0	0
-1	1	0	0
2	-3	0	0
5	0	1	0
1	1	-2	0

This results in a system of six equations in three variables, whose augmented matrix is

	0	0	0	0]
	1	0	0	0
	-1	1	0	0 0 0 0 0 0
	2	-3	0	0
	5	0	1	0
_	1	1	-2	0

The solution to the system is easily determined to be a = b = c = 0, so the set $\{\vec{u}_1, \vec{u_2}, \vec{u}_3\}$ is independent.

This results in a system of six equations in three variables, whose augmented matrix is

	0	0	0	0]
	1	0	0	0
	-1	1	0	0 0 0 0 0 0
	2	-3	0	0
	5	0	1	0
_	1	1	-2	0

The solution to the system is easily determined to be a = b = c = 0, so the set $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ is independent. Hence, nonzero rows of A are independent.

This results in a system of six equations in three variables, whose augmented matrix is

-	0	0	0	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$
	1	0	0	0
	-1	1	0	0
	2	-3	0	$\begin{array}{c} 0 \\ 0 \end{array}$
	5	0	1	0
	1	1	-2	0

The solution to the system is easily determined to be a = b = c = 0, so the set $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ is independent. Hence, nonzero rows of A are independent.

Remark

In general, the nonzero rows of any row-echelon matrix form an independent set of (row) vectors.

Let $U = {\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k} \subseteq \mathbb{R}^n$ be an independent set. Then any vector $\vec{x} \in \text{span}(U)$ has a unique representation as a linear combination of vectors of U.

Let $U = {\vec{v}_1, \vec{v}_2, ..., \vec{v}_k} \subseteq \mathbb{R}^n$ be an **independent** set. Then any vector $\vec{x} \in \text{span}(U)$ has a **unique** representation as a linear combination of vectors of U.

Proof.

Suppose that there is a vector $\vec{x} \in \text{span}(U)$ such that

 $\vec{x} \hspace{0.1 cm} = \hspace{0.1 cm} s_1 \vec{v}_1 + s_2 \vec{v}_2 + \dots + s_k \vec{v}_k, \hspace{0.1 cm} \mathrm{for \hspace{0.1 cm} some \hspace{0.1 cm}} s_1, s_2, \dots, s_k \in \mathbb{R}, \hspace{0.1 cm} \mathrm{and} \hspace{0.1 cm}$

 $\vec{x} = t_1 \vec{v}_1 + t_2 \vec{v}_2 + \dots + t_k \vec{v}_k, \text{ for some } t_1, t_2, \dots, t_k \in \mathbb{R}.$

Let $U = {\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k} \subseteq \mathbb{R}^n$ be an independent set. Then any vector $\vec{x} \in \text{span}(U)$ has a unique representation as a linear combination of vectors of U.

Proof.

Suppose that there is a vector $\vec{x} \in \text{span}(U)$ such that

$$\vec{x} \hspace{0.1 cm} = \hspace{0.1 cm} s_1 \vec{v}_1 + s_2 \vec{v}_2 + \dots + s_k \vec{v}_k, \hspace{0.1 cm} \mathrm{for \hspace{0.1 cm} some \hspace{0.1 cm}} s_1, s_2, \dots, s_k \in \mathbb{R}, \hspace{0.1 cm} \mathrm{and} \hspace{0.1 cm}$$

 $\vec{x} = t_1 \vec{v}_1 + t_2 \vec{v}_2 + \dots + t_k \vec{v}_k, \text{ for some } t_1, t_2, \dots, t_k \in \mathbb{R}.$

\downarrow

$$\begin{split} \vec{0}_n &= \vec{x} - \vec{x} &= (s_1 \vec{v}_1 + s_2 \vec{v}_2 + \dots + s_k \vec{v}_k) - (t_1 \vec{v}_1 + t_2 \vec{v}_2 + \dots + t_k \vec{v}_k) \\ &= (s_1 - t_1) \vec{v}_1 + (s_2 - t_2) \vec{v}_2 + \dots + (s_k - t_k) \vec{v}_k. \end{split}$$

Let $U = {\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k} \subseteq \mathbb{R}^n$ be an independent set. Then any vector $\vec{x} \in \text{span}(U)$ has a unique representation as a linear combination of vectors of U.

Proof.

Suppose that there is a vector $\vec{x} \in \text{span}(U)$ such that

$$\vec{x} \hspace{0.1 cm} = \hspace{0.1 cm} s_1 \vec{v}_1 + s_2 \vec{v}_2 + \dots + s_k \vec{v}_k, \hspace{0.1 cm} \text{for some } s_1, s_2, \dots, s_k \in \mathbb{R}, \hspace{0.1 cm} \text{and} \hspace{0.1 cm}$$

$$\vec{x} = t_1 \vec{v}_1 + t_2 \vec{v}_2 + \dots + t_k \vec{v}_k, \text{ for some } t_1, t_2, \dots, t_k \in \mathbb{R}.$$

\Downarrow

$$\begin{array}{lll} \vec{0}_n = \vec{x} - \vec{x} & = & (s_1 \vec{v}_1 + s_2 \vec{v}_2 + \dots + s_k \vec{v}_k) - (t_1 \vec{v}_1 + t_2 \vec{v}_2 + \dots + t_k \vec{v}_k) \\ & = & (s_1 - t_1) \vec{v}_1 + (s_2 - t_2) \vec{v}_2 + \dots + (s_k - t_k) \vec{v}_k. \end{array}$$

U is independent

$$s_1-t_1=0, \quad s_2-t_2=0, \quad \cdots, s_k-t_k=0$$

Let $U = {\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k} \subseteq \mathbb{R}^n$ be an independent set. Then any vector $\vec{x} \in \text{span}(U)$ has a unique representation as a linear combination of vectors of U.

Proof.

Suppose that there is a vector $\vec{x} \in \text{span}(U)$ such that

$$\vec{\mathbf{x}} = \mathbf{s}_1 \vec{\mathbf{v}}_1 + \mathbf{s}_2 \vec{\mathbf{v}}_2 + \dots + \mathbf{s}_k \vec{\mathbf{v}}_k$$
, for some $\mathbf{s}_1, \mathbf{s}_2, \dots, \mathbf{s}_k \in \mathbb{R}$, and

IOI SOME U1.

 $\cup_k \vee_k$,

$$\begin{split} & & \Downarrow \\ \vec{0}_n = \vec{x} - \vec{x} & = & (s_1 \vec{v}_1 + s_2 \vec{v}_2 + \dots + s_k \vec{v}_k) - (t_1 \vec{v}_1 + t_2 \vec{v}_2 + \dots + t_k \vec{v}_k) \\ & = & (s_1 - t_1) \vec{v}_1 + (s_2 - t_2) \vec{v}_2 + \dots + (s_k - t_k) \vec{v}_k. \end{split}$$

U is independent

$$\begin{array}{cccc} s_{1}-t_{1}=0, & s_{2}-t_{2}=0, & \cdots, s_{k}-t_{k}=0 \\ & & & \\ & & \\ s_{1}=t_{1}, & s_{2}=t_{2}, & \cdots, s_{k}=t_{k}. \end{array}$$

Geometric Examples

Independence, spanning, and matrices

Bases and Dimension

Finding Bases and Dimension

Two Geometric Examples

Two Geometric Examples

Problem

Suppose that \vec{u} and \vec{v} are nonzero vectors in \mathbb{R}^3 . Prove that $\{\vec{u}, \vec{v}\}$ is dependent if and only if \vec{u} and \vec{v} are parallel.

Two Geometric Examples

Problem

Suppose that \vec{u} and \vec{v} are nonzero vectors in \mathbb{R}^3 . Prove that $\{\vec{u}, \vec{v}\}$ is dependent if and only if \vec{u} and \vec{v} are parallel.

Solution

(⇒) If { \vec{u}, \vec{v} } is dependent, then there exist $a, b \in \mathbb{R}$ so that $a\vec{u} + b\vec{v} = \vec{0}_3$ with a and b not both zero. By symmetry, we may assume that $a \neq 0$. Then $\vec{u} = -\frac{b}{a}\vec{v}$, so \vec{u} and \vec{v} are scalar multiples of each other, i.e., \vec{u} and \vec{v} are parallel.

Two Geometric Examples

Problem

Suppose that \vec{u} and \vec{v} are nonzero vectors in \mathbb{R}^3 . Prove that $\{\vec{u}, \vec{v}\}$ is dependent if and only if \vec{u} and \vec{v} are parallel.

Solution

(⇒) If { \vec{u}, \vec{v} } is dependent, then there exist $a, b \in \mathbb{R}$ so that $a\vec{u} + b\vec{v} = \vec{0}_3$ with a and b not both zero. By symmetry, we may assume that $a \neq 0$. Then $\vec{u} = -\frac{b}{a}\vec{v}$, so \vec{u} and \vec{v} are scalar multiples of each other, i.e., \vec{u} and \vec{v} are parallel.

(\Leftarrow) Conversely, if \vec{u} and \vec{v} are parallel, then there exists a $t \in \mathbb{R}$, $t \neq 0$, so that $\vec{u} = t\vec{v}$. Thus $\vec{u} - t\vec{v} = \vec{0}_3$, so we have a nontrivial linear combination of \vec{u} and \vec{v} that vanishes. Therefore, $\{\vec{u}, \vec{v}\}$ is dependent.

$\operatorname{Problem}$

Suppose that \vec{u}, \vec{v} and \vec{w} are nonzero vectors in \mathbb{R}^3 , and that $\{\vec{v}, \vec{w}\}$ is independent. Prove that $\{\vec{u}, \vec{v}, \vec{w}\}$ is independent if and only if $\vec{u} \notin \operatorname{span}\{\vec{v}, \vec{w}\}$.

Suppose that \vec{u}, \vec{v} and \vec{w} are nonzero vectors in \mathbb{R}^3 , and that $\{\vec{v}, \vec{w}\}$ is independent. Prove that $\{\vec{u}, \vec{v}, \vec{w}\}$ is independent if and only if $\vec{u} \notin \operatorname{span}\{\vec{v}, \vec{w}\}$.

Solution

(⇒) If $\vec{u} \in \text{span}\{\vec{v}, \vec{w}\}$, then there exist $a, b \in \mathbb{R}$ so that $\vec{u} = a\vec{v} + b\vec{w}$. This implies that $\vec{u} - a\vec{v} - b\vec{w} = \vec{0}_3$, so $\vec{u} - a\vec{v} - b\vec{w}$ is a nontrivial linear combination of $\{\vec{u}, \vec{v}, \vec{w}\}$ that vanishes, and thus $\{\vec{u}, \vec{v}, \vec{w}\}$ is dependent.

Suppose that \vec{u}, \vec{v} and \vec{w} are nonzero vectors in \mathbb{R}^3 , and that $\{\vec{v}, \vec{w}\}$ is independent. Prove that $\{\vec{u}, \vec{v}, \vec{w}\}$ is independent if and only if $\vec{u} \notin \operatorname{span}\{\vec{v}, \vec{w}\}$.

Solution

(⇒) If $\vec{u} \in \text{span}\{\vec{v},\vec{w}\}$, then there exist $a, b \in \mathbb{R}$ so that $\vec{u} = a\vec{v} + b\vec{w}$. This implies that $\vec{u} - a\vec{v} - b\vec{w} = \vec{0}_3$, so $\vec{u} - a\vec{v} - b\vec{w}$ is a nontrivial linear combination of $\{\vec{u}, \vec{v}, \vec{w}\}$ that vanishes, and thus $\{\vec{u}, \vec{v}, \vec{w}\}$ is dependent.

(⇐) Now suppose that $\vec{u} \notin \operatorname{span}{\vec{v}, \vec{w}}$, and suppose that there exist a, b, c ∈ \mathbb{R} such that a \vec{u} + b \vec{v} + c \vec{w} = $\vec{0}_3$. If a ≠ 0, then $\vec{u} = -\frac{b}{a}\vec{v} - \frac{c}{a}\vec{w}$, and $\vec{u} \in \operatorname{span}{\vec{v}, \vec{w}}$, a contradiction. Therefore, a = 0, implying that $b\vec{v} + c\vec{w} = \vec{0}_3$. Since ${\vec{v}, \vec{w}}$ is independent, b = c = 0, and thus a = b = c = 0, i.e., the only linear combination of \vec{u}, \vec{v} and \vec{w} that vanishes is the trivial one. Therefore, ${\vec{u}, \vec{v}, \vec{w}}$ is independent. Linear Independence

Geometric Examples

Independence, spanning, and matrices

Bases and Dimension

Finding Bases and Dimension

Independence, spanning, and matrices

Theorem

Suppose A is an $m \times n$ matrix with columns $\vec{c}_1, \vec{c}_2, \dots, \vec{c}_n \in \mathbb{R}^m$. Then

- 1. $\{\vec{c}_1, \vec{c}_2, \dots, \vec{c}_n\}$ is independent if and only if $A\vec{x} = \vec{0}_m$ with $\vec{x} \in \mathbb{R}^n$ implies $\vec{x} = \vec{0}_n$.
- 2. $\mathbb{R}^m = \operatorname{span}\{\vec{c}_1, \vec{c}_2, \dots, \vec{c}_n\}$ if and only if $A\vec{x} = \vec{b}$ has a solution for every $\vec{b} \in \mathbb{R}^m$.

- Let $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_k \in \mathbb{R}^n$.
 - 1. Are $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_k$ linearly independent?
 - 2. Do $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_k$ span \mathbb{R}^n ?

Let $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k \in \mathbb{R}^n$.

- 1. Are $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_k$ linearly independent?
- 2. Do $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_k$ span \mathbb{R}^n ?

Solution

To answer both question, simply let A be a matrix whose columns are the vectors $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_k \in \mathbb{R}^n$. Find R, a row-echelon form of A.

Let $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k \in \mathbb{R}^n$.

- 1. Are $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_k$ linearly independent?
- 2. Do $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_k$ span \mathbb{R}^n ?

Solution

To answer both question, simply let A be a matrix whose columns are the vectors $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_k \in \mathbb{R}^n$. Find R, a row-echelon form of A.

1. "yes" if and only if each column of R has a leading one.

Let $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k \in \mathbb{R}^n$.

- 1. Are $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_k$ linearly independent?
- 2. Do $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_k$ span \mathbb{R}^n ?

Solution

To answer both question, simply let A be a matrix whose columns are the vectors $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_k \in \mathbb{R}^n$. Find R, a row-echelon form of A.

- 1. "yes" if and only if each column of R has a leading one.
- 2. "yes" if and only if each row of R has a leading one.

Let
$$\vec{u}_1 = \begin{bmatrix} 1\\ -1\\ 1\\ -1 \end{bmatrix}, \vec{u}_2 = \begin{bmatrix} -1\\ 1\\ 1\\ 1\\ 1 \end{bmatrix}, \vec{u}_3 = \begin{bmatrix} 1\\ -1\\ -1\\ 1 \end{bmatrix}, \vec{u}_4 = \begin{bmatrix} 1\\ -1\\ 1\\ 1\\ 1 \end{bmatrix}.$$

Show that span{ $\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4$ } $\neq \mathbb{R}^4$.

Let
$$\vec{u}_1 = \begin{bmatrix} 1\\ -1\\ 1\\ -1 \end{bmatrix}, \vec{u}_2 = \begin{bmatrix} -1\\ 1\\ 1\\ 1\\ 1 \end{bmatrix}, \vec{u}_3 = \begin{bmatrix} 1\\ -1\\ -1\\ 1 \end{bmatrix}, \vec{u}_4 = \begin{bmatrix} 1\\ -1\\ 1\\ 1\\ 1 \end{bmatrix}.$$

Show that span{ $\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4$ } $\neq \mathbb{R}^4$.

Solution

Let $\mathbf{A} = \begin{bmatrix} \vec{u}_1 & \vec{u}_2 & \vec{u}_3 & \vec{u}_4 \end{bmatrix}$.

Let
$$\vec{u}_1 = \begin{bmatrix} 1\\ -1\\ 1\\ -1 \end{bmatrix}, \vec{u}_2 = \begin{bmatrix} -1\\ 1\\ 1\\ 1\\ 1 \end{bmatrix}, \vec{u}_3 = \begin{bmatrix} 1\\ -1\\ -1\\ 1\\ 1 \end{bmatrix}, \vec{u}_4 = \begin{bmatrix} 1\\ -1\\ 1\\ 1\\ 1 \end{bmatrix}.$$

Show that span{ $\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4$ } $\neq \mathbb{R}^4$.

Solution

Let $A = \begin{bmatrix} \vec{u}_1 & \vec{u}_2 & \vec{u}_3 & \vec{u}_4 \end{bmatrix}$. Apply row operations to get R, a row-echelon form of A:

$$\begin{bmatrix} 1 & -1 & 1 & 1 \\ -1 & 1 & -1 & -1 \\ 1 & 1 & -1 & 1 \\ -1 & 1 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Let
$$\vec{u}_1 = \begin{bmatrix} 1\\ -1\\ 1\\ -1 \end{bmatrix}, \vec{u}_2 = \begin{bmatrix} -1\\ 1\\ 1\\ 1\\ 1 \end{bmatrix}, \vec{u}_3 = \begin{bmatrix} 1\\ -1\\ -1\\ 1\\ 1 \end{bmatrix}, \vec{u}_4 = \begin{bmatrix} 1\\ -1\\ 1\\ 1\\ 1 \end{bmatrix}.$$

Show that span{ $\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4$ } $\neq \mathbb{R}^4$.

Solution

Let $A = \begin{bmatrix} \vec{u}_1 & \vec{u}_2 & \vec{u}_3 & \vec{u}_4 \end{bmatrix}$. Apply row operations to get R, a row-echelon form of A:

$$\begin{bmatrix} 1 & -1 & 1 & 1 \\ -1 & 1 & -1 & -1 \\ 1 & 1 & -1 & 1 \\ -1 & 1 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since the last row of R consists only of zeros, $R\vec{x} = \vec{e}_4$ has no solution $\vec{x} \in \mathbb{R}^4$, implying that there is a $\vec{b} \in \mathbb{R}^4$ so that $A\vec{x} = \vec{b}$ has no solution $\vec{x} \in \mathbb{R}^4$. By previous Theorem, $\mathbb{R}^4 \neq \text{span}\{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\}$.

Theorem

Let A be an $\mathbf{n} \times \mathbf{n}$ matrix. The following are equivalent.

- 1. A is invertible.
- 2. The columns of A are independent.
- 3. The columns of A span \mathbb{R}^n .
- 4. The rows of A are independent, i.e., the columns of A^T are independent.
- 5. The rows of A span the set of all $1 \times n$ rows, i.e., the columns of A^T span \mathbb{R}^n .

Problem (revisited)

Let
$$\vec{u}_1 = \begin{bmatrix} 1\\ -1\\ 1\\ -1 \end{bmatrix}$$
, $\vec{u}_2 = \begin{bmatrix} -1\\ 1\\ 1\\ 1\\ 1 \end{bmatrix}$, $\vec{u}_3 = \begin{bmatrix} 1\\ -1\\ -1\\ 1\\ 1 \end{bmatrix}$, $\vec{u}_4 = \begin{bmatrix} 1\\ -1\\ 1\\ 1\\ 1 \end{bmatrix}$.

Show that span{ $\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4$ } $\neq \mathbb{R}^4$.

Problem (revisited)

Let
$$\vec{u}_1 = \begin{bmatrix} 1\\ -1\\ 1\\ -1 \end{bmatrix}, \vec{u}_2 = \begin{bmatrix} -1\\ 1\\ 1\\ 1\\ 1 \end{bmatrix}, \vec{u}_3 = \begin{bmatrix} 1\\ -1\\ -1\\ 1 \end{bmatrix}, \vec{u}_4 = \begin{bmatrix} 1\\ -1\\ 1\\ 1\\ 1 \end{bmatrix}.$$

Show that span{ $\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4$ } $\neq \mathbb{R}^4$.

Solution

Let
$$A = \begin{bmatrix} \vec{u}_1 & \vec{u}_2 & \vec{u}_3 & \vec{u}_4 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 & 1 \\ -1 & 1 & -1 & -1 \\ 1 & 1 & -1 & 1 \\ -1 & 1 & 1 & 1 \end{bmatrix}$$
.

By the previous Theorem, the columns of A span \mathbb{R}^4 if and only if A is invertible. Since det(A) = 0 (row 2 is (-1) times row 1), A is not invertible, and thus { $\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4$ } does not span \mathbb{R}^4 .

Let

$$\vec{\mathbf{u}} = \begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix}, \vec{\mathbf{v}} = \begin{bmatrix} 3\\ 2\\ -1 \end{bmatrix}, \vec{\mathbf{w}} = \begin{bmatrix} 3\\ 5\\ -2 \end{bmatrix}.$$

Is $\{\vec{u},\vec{v},\vec{w}\}$ independent?

Let

$$\vec{\mathbf{u}} = \begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix}, \vec{\mathbf{v}} = \begin{bmatrix} 3\\ 2\\ -1 \end{bmatrix}, \vec{\mathbf{w}} = \begin{bmatrix} 3\\ 5\\ -2 \end{bmatrix}.$$

Is $\{\vec{u},\vec{v},\vec{w}\}$ independent?

Solution

Let $A = \begin{bmatrix} \vec{u} & \vec{v} & \vec{w} \end{bmatrix}$. From the previous Theorem, $\{\vec{u}, \vec{v}, \vec{w}\}$ is independent if and only if A is invertible.

Since

$$\det(\mathbf{A}) = \det \begin{bmatrix} 1 & 3 & 3\\ -1 & 2 & 5\\ 0 & -1 & -2 \end{bmatrix} = -2,$$

and $-2 \neq 0$, A is invertible, and therefore $\{\vec{u}, \vec{v}, \vec{w}\}$ is an independent subset of \mathbb{R}^3 .

Remark

Notice that $\{\vec{u}, \vec{v}, \vec{w}\}$ also spans \mathbb{R}^3 .

Linear Independence

Geometric Examples

Independence, spanning, and matrices

Bases and Dimension

Finding Bases and Dimension

Theorem (Fundamental Theorem)

Let U be a subspace of \mathbb{R}^n that is spanned by m vectors. If U contains a subset of k linearly independent vectors, then $k\leq m.$

Theorem (Fundamental Theorem)

Let U be a subspace of \mathbb{R}^n that is spanned by m vectors. If U contains a subset of k linearly independent vectors, then $k \leq m$.

Definition

Let U be a subspace of \mathbb{R}^n . A set $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_m\}$ is a basis of U if

- 1. $\{\vec{x}_1,\vec{x}_2,\ldots,\vec{x}_m\}$ is linearly independent;
- 2. U = span{ $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_m$ }.

Theorem (Fundamental Theorem)

Let U be a subspace of \mathbb{R}^n that is spanned by m vectors. If U contains a subset of k linearly independent vectors, then $k \leq m$.

Definition

Let U be a subspace of \mathbb{R}^n . A set $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_m\}$ is a basis of U if

1.
$$\{\vec{x}_1,\vec{x}_2,\ldots,\vec{x}_m\}$$
 is linearly independent;

2. U = span{
$$\vec{x}_1, \vec{x}_2, \dots, \vec{x}_m$$
}.

As a consequence of all this, if $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_m\}$ is a basis of a subspace U, then every $\vec{u} \in U$ has a **unique** representation as a linear combination of the vectors \vec{x}_i , $1 \leq i \leq m$.

Example

The subset $\{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$ is a basis of \mathbb{R}^n , called the standard basis of \mathbb{R}^n . (We've already seen that $\{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$ is linearly independent and that $\mathbb{R}^n = \operatorname{span}\{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$.)

Example

The subset $\{\vec{e}_1, \vec{e}_2, \ldots, \vec{e}_n\}$ is a basis of \mathbb{R}^n , called the standard basis of \mathbb{R}^n . (We've already seen that $\{\vec{e}_1, \vec{e}_2, \ldots, \vec{e}_n\}$ is linearly independent and that $\mathbb{R}^n = \operatorname{span}\{\vec{e}_1, \vec{e}_2, \ldots, \vec{e}_n\}$.)

Example

In a previous problem, we saw that $\mathbb{R}^4 = \operatorname{span}(S)$ where

$$\mathbf{S} = \left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} \right\}.$$

S is also linearly independent (prove this). Therefore, S is a basis of \mathbb{R}^4 .

Theorem (Invariance Theorem)

If $\{\vec{x}_1,\vec{x}_2,\ldots,\vec{x}_m\}$ and $\{\vec{y}_1,\vec{y}_2,\ldots,\vec{y}_k\}$ are bases of a subspace U of $\mathbb{R}^n,$ then m=k.

Theorem (Invariance Theorem)

If $\{\vec{x}_1,\vec{x}_2,\ldots,\vec{x}_m\}$ and $\{\vec{y}_1,\vec{y}_2,\ldots,\vec{y}_k\}$ are bases of a subspace U of $\mathbb{R}^n,$ then m=k.

Proof.

Let $S = {\vec{x}_1, \vec{x}_2, ..., \vec{x}_m}$ and $T = {\vec{y}_1, \vec{y}_2, ..., \vec{y}_k}$. Since S spans U and T is independent, it follows from the Fundamental Theorem that $k \le m$. Also, since T spans U and S is independent, it follows from the Fundamental Theorem that $m \le k$. Since $k \le m$ and $m \le k$, k = m.

Theorem (Invariance Theorem)

If $\{\vec{x}_1,\vec{x}_2,\ldots,\vec{x}_m\}$ and $\{\vec{y}_1,\vec{y}_2,\ldots,\vec{y}_k\}$ are bases of a subspace U of $\mathbb{R}^n,$ then m=k.

Proof.

Let $S = {\vec{x}_1, \vec{x}_2, \dots, \vec{x}_m}$ and $T = {\vec{y}_1, \vec{y}_2, \dots, \vec{y}_k}$. Since S spans U and T is independent, it follows from the Fundamental Theorem that $k \leq m$. Also, since T spans U and S is independent, it follows from the Fundamental Theorem that $m \leq k$. Since $k \leq m$ and $m \leq k$, k = m.

Definition

The dimension of a subspace U of \mathbb{R}^n is the number of vectors in any basis of U, and is denoted $\dim(U)$.

$\operatorname{Problem}$

In \mathbb{R}^n , what is the dimension of the subspace $\{\vec{0}_n\}$?

In \mathbb{R}^n , what is the dimension of the subspace $\{\vec{0}_n\}$?

Solution

The only basis of the zero subspace is the empty set, \emptyset : (i) the empty set is (trivially) independent, and (ii) any linear combination of no vectors is the zero vector. Therefore, the zero subspace has dimension zero.

In \mathbb{R}^n , what is the dimension of the subspace $\{\vec{0}_n\}$?

Solution

The only basis of the zero subspace is the empty set, \emptyset : (i) the empty set is (trivially) independent, and (ii) any linear combination of no vectors is the zero vector. Therefore, the zero subspace has dimension zero.

Example

Since $\{\vec{e}_1, \vec{e}_2, \ldots, \vec{e}_n\}$ is a basis of \mathbb{R}^n , \mathbb{R}^n has dimension n. This is why the Cartesian plane, \mathbb{R}^2 , is called 2-dimensional, and \mathbb{R}^3 is called 3-dimensional.

Let

$$U = \left\{ \left[\begin{array}{c} a \\ b \\ c \\ d \end{array} \right] \in \mathbb{R}^4 \ \middle| \ a-b = d-c \right\}.$$

Show that U is a subspace of \mathbb{R}^4 , find a basis of U, and find dim(U).

Solution

The condition $\mathbf{a}-\mathbf{b}=\mathbf{d}-\mathbf{c}$ is equivalent to the condition $\mathbf{a}=\mathbf{b}-\mathbf{c}+\mathbf{d},$ so we may write

$$\mathbf{U} = \left\{ \begin{bmatrix} \mathbf{b} - \mathbf{c} + \mathbf{d} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{bmatrix} \in \mathbb{R}^4 \right\} = \left\{ \mathbf{b} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \mathbf{c} \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + \mathbf{d} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} \middle| \mathbf{b}, \mathbf{c}, \mathbf{d} \in \mathbb{R} \right\}$$

Solution

The condition a - b = d - c is equivalent to the condition a = b - c + d, so we may write

$$\mathbf{U} = \left\{ \begin{bmatrix} \mathbf{b} - \mathbf{c} + \mathbf{d} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{bmatrix} \in \mathbb{R}^4 \right\} = \left\{ \mathbf{b} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \mathbf{c} \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + \mathbf{d} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} \middle| \mathbf{b}, \mathbf{c}, \mathbf{d} \in \mathbb{R} \right\}$$

This shows that U is a subspace of $\mathbb{R}^4,$ since $U=\text{span}\{\vec{x}_1,\vec{x}_2,\vec{x}_3\}$ where

$$\begin{aligned} \vec{x}_1 &= \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}^T \\ \vec{x}_2 &= \begin{bmatrix} -1 & 0 & 1 & 0 \end{bmatrix}^T \\ \vec{x}_3 &= \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}^T. \end{aligned}$$

Solution (continued)

Furthermore,

$$\left\{ \left[\begin{array}{c} 1\\1\\0\\0 \end{array} \right], \left[\begin{array}{c} -1\\0\\1\\0 \end{array} \right], \left[\begin{array}{c} 1\\0\\1\\1 \end{array} \right] \right\}$$

is linearly independent, as can be seen by taking the reduced row-echelon (RRE) form of the matrix whose columns are \vec{x}_1, \vec{x}_2 and \vec{x}_3 .

$$\begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Solution (continued)

Furthermore,

$$\left\{ \left[\begin{array}{c} 1\\1\\0\\0 \end{array} \right], \left[\begin{array}{c} -1\\0\\1\\0 \end{array} \right], \left[\begin{array}{c} 1\\0\\1\\1 \end{array} \right] \right\}$$

is linearly independent, as can be seen by taking the reduced row-echelon (RRE) form of the matrix whose columns are \vec{x}_1, \vec{x}_2 and \vec{x}_3 .

$$\left[\begin{array}{rrrr} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \rightarrow \left[\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right]$$

Since every column of the RRE matrix has a leading one, the columns are linearly independent.

Therefore $\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$ is linearly independent and spans U, so is a basis of U, and hence U has dimension three.

Example (Important!)

Suppose that $B = {\vec{x}_1, \vec{x}_2, ..., \vec{x}_n}$ is a basis of \mathbb{R}^n and that A is an $n \times n$ invertible matrix. Let $D = {A\vec{x}_1, A\vec{x}_2, ..., A\vec{x}_n}$, and let

$$X = \left[\begin{array}{ccc} \vec{x}_1 & \vec{x}_2 & \cdots & \vec{x}_n \end{array} \right].$$

Since B is a basis of \mathbb{R}^n , B is independent (also a spanning set of \mathbb{R}^n); thus X is invertible. Now, because A and X are invertible, so is

$$AX = \begin{bmatrix} A\vec{x}_1 & A\vec{x}_2 & \cdots & A\vec{x}_n \end{bmatrix}.$$

Therefore, the columns of AX are independent and span \mathbb{R}^n . Since the columns of AX are the vectors of D, D is a basis of \mathbb{R}^n .

Linear Independence

Geometric Examples

Independence, spanning, and matrices

Bases and Dimension

Finding Bases and Dimension

Finding Bases and Dimension

Finding Bases and Dimension

Theorem

Let U be a subspace of \mathbb{R}^n . Then

- 1. U has a basis, and $\dim(U) \leq n$.
- 2. Any independent set of U can be extended (by adding vectors) to a basis of U.
- **3.** Any spanning set of U can be cut down (by deleting vectors) to a basis of U.

Previously, we showed that

$$U = \left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \in \mathbb{R}^4 \ \middle| \ a - b = d - c \right\}$$

is a subspace of \mathbb{R}^4 , and that $\dim(U) = 3$.

Previously, we showed that

$$U = \left\{ \left[\begin{array}{c} a \\ b \\ c \\ d \end{array} \right] \in \mathbb{R}^4 \ \middle| \ a - b = d - c \right\}$$

is a subspace of \mathbb{R}^4 , and that $\dim(U) = 3$. Also, it is easy to verify that

$$\mathbf{S} = \left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\3\\3\\2 \end{bmatrix} \right\},\$$

is an independent subset of U.

Previously, we showed that

$$U = \left\{ \left[\begin{array}{c} a \\ b \\ c \\ d \end{array} \right] \in \mathbb{R}^4 \ \middle| \ a - b = d - c \right\}$$

is a subspace of \mathbb{R}^4 , and that dim(U) = 3. Also, it is easy to verify that

$$\mathbf{S} = \left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\3\\3\\2 \end{bmatrix} \right\},\$$

is an independent subset of U.

By a previous Theorem, S can be extended to a basis of U. To do so, find a vector in U that is not in span(S).

Example (continued)

$$\begin{bmatrix} 1 & 2 & ? \\ 1 & 3 & ? \\ 1 & 3 & ? \\ 1 & 2 & ? \end{bmatrix}$$

Example (continued)

$$\begin{bmatrix} 1 & 2 & ? \\ 1 & 3 & ? \\ 1 & 3 & ? \\ 1 & 2 & ? \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 & 1 \\ 1 & 3 & 0 \\ 1 & 3 & -1 \\ 1 & 2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Example (continued)

$$\begin{bmatrix} 1 & 2 & ? \\ 1 & 3 & ? \\ 1 & 3 & ? \\ 1 & 2 & ? \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 1 & 3 & 0 \\ 1 & 3 & -1 \\ 1 & 2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Therefore, S can be extended to the basis

$$\left\{ \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\3\\3\\2\\2 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1\\0\\\end{bmatrix} \right\} \text{ of U.}$$

Problem

Let

$$\vec{u}_1 = \begin{bmatrix} -1\\ 2\\ 1\\ 0 \end{bmatrix}, \quad \vec{u}_2 = \begin{bmatrix} 2\\ 0\\ 3\\ -1 \end{bmatrix}, \quad \vec{u}_3 = \begin{bmatrix} 4\\ 4\\ 11\\ -3 \end{bmatrix}, \quad \vec{u}_4 = \begin{bmatrix} 3\\ -2\\ 2\\ -1 \end{bmatrix},$$

and let $U = span\{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\}$. Find a basis of U that is a subset of $\{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\}$, and find dim(U).

Problem

Let

$$\vec{u}_1 = \begin{bmatrix} -1\\ 2\\ 1\\ 0 \end{bmatrix}, \quad \vec{u}_2 = \begin{bmatrix} 2\\ 0\\ 3\\ -1 \end{bmatrix}, \quad \vec{u}_3 = \begin{bmatrix} 4\\ 4\\ 11\\ -3 \end{bmatrix}, \quad \vec{u}_4 = \begin{bmatrix} 3\\ -2\\ 2\\ -1 \end{bmatrix},$$

and let $U = \text{span}\{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\}$. Find a basis of U that is a subset of $\{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\}$, and find dim(U).

Solution

Suppose $a_1\vec{u}_1 + a_2\vec{u}_2 + a_3\vec{u}_3 + a_4\vec{u}_4 = \vec{0}$. Solve for a_1, a_2, a_3, a_4 ; if some $a_i \neq 0, 1 \leq i \leq 4$, then \vec{u}_i can be removed from the set $\{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\}$, and the resulting set still spans U. Repeat this on the resulting set until a linearly independent set is obtained.

One solution is $B = {\vec{u}_1, \vec{u}_2}$. Then U = span(B) and B is linearly independent. Therefore B is a basis of U, and thus $\dim(U) = 2$.

Remark

In the next section, we will learn an efficient technique for solving this type of problem.

Let U be a subspace of \mathbb{R}^n with dim(U) = m, and let $B = \{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_m\}$ be a subset of U. Then B is linearly independent if and only if B spans U.

Let U be a subspace of \mathbb{R}^n with dim(U) = m, and let B = { $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_m$ } be a subset of U. Then B is linearly independent if and only if B spans U.

Proof.

(⇒) Suppose B is linearly independent. If $\operatorname{span}(B) \neq U$, then extend B to a basis B' of U by adding appropriate vectors from U. Then B' is a basis of size more than $m = \dim(U)$, which is impossible. Therefore, $\operatorname{span}(B) = U$, and hence B is a basis of U.

Let U be a subspace of \mathbb{R}^n with dim(U) = m, and let B = { $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_m$ } be a subset of U. Then B is linearly independent if and only if B spans U.

Proof.

(⇒) Suppose B is linearly independent. If $\operatorname{span}(B) \neq U$, then extend B to a basis B' of U by adding appropriate vectors from U. Then B' is a basis of size more than $m = \dim(U)$, which is impossible. Therefore, $\operatorname{span}(B) = U$, and hence B is a basis of U.

(\Leftarrow) Conversely, suppose span(B) = U. If B is not linearly independent, then cut B down to a basis B' of U by deleting appropriate vectors. But then B' is a basis of size less than m = dim(U), which is impossible. Therefore, B is linearly independent, and hence B is a basis of U.

Remark

Let U be a subspace of \mathbb{R}^n and suppose $B \subseteq U$.

- If B spans U and $|B| = \dim(U)$, then B is also independent, and hence B is a basis of U.
- ▶ If B is independent and $|B| = \dim(U)$, then B also spans U, and hence B is a basis of U.

Therefore, if $|B| = \dim(U)$, in order to prove that B is a basis, it is sufficient to prove either of the following two statements:

- 1. B is independent
- 2. B spans U

Let U and W be subspace of \mathbb{R}^n , and suppose that $U \subseteq W$. Then

- 1. $\dim(U) \leq \dim(W)$.
- 2. If $\dim(U) = \dim(W)$, then U = W.

Let U and W be subspace of $\mathbb{R}^n,$ and suppose that $U\subseteq W.$ Then

- 1. $\dim(U) \leq \dim(W)$.
- 2. If $\dim(U) = \dim(W)$, then U = W.

Proof.

Let $\dim(W) = k$, and let B be a basis of U.

1. If $\dim(U) > k$, then B is a subset of independent vectors of W with $|B| = \dim(U) > k$, which contradicts the Fundamental Theorem.

Let U and W be subspace of \mathbb{R}^n , and suppose that $U \subseteq W$. Then

- 1. $\dim(U) \leq \dim(W)$.
- 2. If $\dim(U) = \dim(W)$, then U = W.

Proof.

Let $\dim(W) = k$, and let B be a basis of U.

- 1. If $\dim(U) > k$, then B is a subset of independent vectors of W with $|B| = \dim(U) > k$, which contradicts the Fundamental Theorem.
- 2. If $\dim(U) = \dim(W)$, then B is an independent subset of W containing $k = \dim(W)$ vectors. Therefore, B spans W, so B is a basis of W, and $U = \operatorname{span}(B) = W$.

Any subspace U of \mathbb{R}^2 , other than $\{\vec{0}_2\}$ and \mathbb{R}^2 itself, must have dimension one, and thus has a basis consisting of one nonzero vector, say \vec{u} . Thus $U = \operatorname{span}\{\vec{u}\}$, and hence is a line through the origin.

Any subspace U of \mathbb{R}^2 , other than $\{\vec{0}_2\}$ and \mathbb{R}^2 itself, must have dimension one, and thus has a basis consisting of one nonzero vector, say \vec{u} . Thus $U = \operatorname{span}\{\vec{u}\}$, and hence is a line through the origin.

Example

Any subspace U of \mathbb{R}^3 , other than $\{\vec{0}_3\}$ and \mathbb{R}^3 itself, must have dimension one or two. If dim(U) = 1, then, as in the previous example, U is a line through the origin. Otherwise dim(U) = 2, and U has a basis consisting of two linearly independent vectors, say \vec{u} and \vec{v} . Thus U = span{ \vec{u}, \vec{v} }, and hence is a plane through the origin.