## Math 221: LINEAR ALGEBRA

Chapter 5. Vector Space $\mathbb{R}^{\mathrm{n}}$<br>§5-2. Independence and Dimension

Le Chen ${ }^{1}$<br>Emory University, 2021 Spring

(last updated on $01 / 25 / 2021$ )


Linear Independence

Geometric Examples

Independence, spanning, and matrices

## Bases and Dimension

Finding Bases and Dimension

Linear Independence

## Geometric Examples

Independence, spanning, and matrices

Bases and Dimension

Finding Bases and Dimension

Linear Independence

## Linear Independence

## Definition

Let $\mathrm{S}=\left\{\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{k}}\right\}$ be a subset of $\mathbb{R}^{\mathrm{n}}$. The set S is linearly independent (or simply independent) if the following condition is satisfied:

$$
\mathrm{t}_{1} \overrightarrow{\mathrm{x}}_{1}+\mathrm{t}_{2} \overrightarrow{\mathrm{x}}_{2}+\cdots+\mathrm{t}_{\mathrm{k}} \overrightarrow{\mathrm{x}}_{\mathrm{k}}=\overrightarrow{0}_{\mathrm{n}} \quad \Rightarrow \quad \mathrm{t}_{1}=\mathrm{t}_{2}=\cdots=\mathrm{t}_{\mathrm{k}}=0
$$

i.e., the only linear combination of vectors of S that vanishes (is equal to the zero vector) is the trivial one (all coefficients equal to zero). A set that is not linearly independent is called dependent.
*


$$
\left\{\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \cdots, \overrightarrow{\mathrm{x}}_{\mathrm{k}}\right\}
$$

$$
\mathrm{t}_{1} \overrightarrow{\mathrm{x}}_{1}+\mathrm{t}_{2} \overrightarrow{\mathrm{x}}_{2}+\cdots+\mathrm{t}_{\mathrm{k}} \overrightarrow{\mathrm{x}}_{\mathrm{k}}=\overrightarrow{0}_{\mathrm{n}}
$$

Linearly Independent


Trivial Solution

Linearly Dependent
Nontrivial Solution

Example
Is $S=\left\{\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right]\right\}$ linearly independent?

## Example

Is $S=\left\{\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right]\right\}$ linearly independent?
Suppose that a linear combination of these vectors vanishes, i.e., there exist $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbb{R}$ so that

$$
\mathrm{a}\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]+\mathrm{b}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\mathrm{c}\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

## Example (continued)

Solve the homogeneous system of three equation in three variables:

## Example (continued)

Solve the homogeneous system of three equation in three variables:

$$
\left[\begin{array}{rrr|r}
-1 & 1 & 1 & 0 \\
0 & 1 & 3 & 0 \\
1 & 1 & 5 & 0
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{lll|r}
1 & 0 & 2 & 0 \\
0 & 1 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The system has solutions $\mathrm{a}=-2 \mathrm{r}, \mathrm{b}=-3 \mathrm{r}, \mathrm{c}=\mathrm{r}$ for $\mathrm{r} \in \mathbb{R}$, so it has nontrivial solutions. Therefore S is dependent.

Example (continued)
Solve the homogeneous system of three equation in three variables:

$$
\left[\begin{array}{rrr|r}
-1 & 1 & 1 & 0 \\
0 & 1 & 3 & 0 \\
1 & 1 & 5 & 0
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{lll|r}
1 & 0 & 2 & 0 \\
0 & 1 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

The system has solutions $\mathrm{a}=-2 \mathrm{r}, \mathrm{b}=-3 \mathrm{r}, \mathrm{c}=\mathrm{r}$ for $\mathrm{r} \in \mathbb{R}$, so it has nontrivial solutions. Therefore S is dependent. In particular, when $\mathrm{r}=1$ we see that

$$
-2\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]-3\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

i.e., this is a nontrivial linear combination that vanishes.

## Example

Consider the set $\left\{\overrightarrow{\mathrm{e}}_{1}, \overrightarrow{\mathrm{e}}_{2}, \ldots, \overrightarrow{\mathrm{e}}_{\mathrm{n}}\right\} \subseteq \mathbb{R}^{\mathrm{n}}$, and suppose $\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{n}} \in \mathbb{R}$ are such that

$$
\mathrm{t}_{1} \overrightarrow{\mathrm{e}}_{1}+\mathrm{t}_{2} \overrightarrow{\mathrm{e}}_{2}+\cdots \mathrm{t}_{\mathrm{n}} \overrightarrow{\mathrm{e}}_{\mathrm{n}}=\overrightarrow{0}_{\mathrm{n}}
$$

Since

$$
\mathrm{t}_{1} \overrightarrow{\mathrm{e}}_{1}+\mathrm{t}_{2} \overrightarrow{\mathrm{e}}_{2}+\cdots \mathrm{t}_{\mathrm{n}} \overrightarrow{\mathrm{e}}_{\mathrm{n}}=\left[\begin{array}{c}
\mathrm{t}_{1} \\
\mathrm{t}_{2} \\
\vdots \\
\mathrm{t}_{\mathrm{n}}
\end{array}\right]
$$

the only linear combination that vanishes is the trivial one, i.e., the one with $\mathrm{t}_{1}=\mathrm{t}_{2}=\cdots=\mathrm{t}_{\mathrm{n}}=0$. Therefore, $\left\{\overrightarrow{\mathrm{e}}_{1}, \overrightarrow{\mathrm{e}}_{2}, \ldots, \overrightarrow{\mathrm{e}}_{\mathrm{n}}\right\}$ is linearly independent.

## Problem

Let $\{\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}}, \overrightarrow{\mathrm{w}}\}$ be an independent subset of $\mathbb{R}^{\mathrm{n}}$. Is $\{\mathrm{u} \overrightarrow{+} \mathrm{v}, 2 \mathrm{u} \overrightarrow{+} \mathrm{w}, \overrightarrow{\mathrm{v}}-5 \overrightarrow{\mathrm{w}}\}$ linearly independent?

## Problem

Let $\{\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}}, \overrightarrow{\mathrm{w}}\}$ be an independent subset of $\mathbb{R}^{\mathrm{n}}$. Is $\{\mathrm{u} \overrightarrow{+} \mathrm{v}, 2 \mathrm{u} \overrightarrow{+\mathrm{w}, \overrightarrow{\mathrm{v}}-5 \overrightarrow{\mathrm{w}}\}}$ linearly independent?

Solution
In order to show the $\{u \overrightarrow{+} v, 2 u \overrightarrow{+} w, \vec{v}-5 \vec{w}\}$ is linearly independent, we need to show that

$$
\mathrm{a}(\overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{v}})+\mathrm{b}(2 \overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{w}})+\mathrm{c}(\overrightarrow{\mathrm{v}}-5 \overrightarrow{\mathrm{w}})=\overrightarrow{0}_{\mathrm{n}} \quad \Rightarrow \quad \mathrm{a}=\mathrm{b}=\mathrm{c}=0 .
$$

## Problem

Let $\{\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}}, \overrightarrow{\mathrm{w}}\}$ be an independent subset of $\mathbb{R}^{\mathrm{n}}$. Is $\{\mathrm{u} \overrightarrow{+} \mathrm{v}, 2 \mathrm{u} \overrightarrow{+\mathrm{w}, \overrightarrow{\mathrm{v}}-5 \overrightarrow{\mathrm{w}}\}}$ linearly independent?

Solution
In order to show the $\{u \overrightarrow{+} v, 2 u \overrightarrow{+} w, \vec{v}-5 \overrightarrow{\mathrm{w}}\}$ is linearly independent, we need to show that

$$
\mathrm{a}(\overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{v}})+\mathrm{b}(2 \overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{w}})+\mathrm{c}(\overrightarrow{\mathrm{v}}-5 \overrightarrow{\mathrm{w}})=\overrightarrow{0}_{\mathrm{n}} \quad \Rightarrow \quad \mathrm{a}=\mathrm{b}=\mathrm{c}=0 .
$$

$\uparrow$

$$
(\mathrm{a}+2 \mathrm{~b}) \overrightarrow{\mathrm{u}}+(\mathrm{a}+\mathrm{c}) \overrightarrow{\mathrm{v}}+(\mathrm{b}-5 \mathrm{c}) \overrightarrow{\mathrm{w}}=\overrightarrow{0}_{\mathrm{n}} .
$$

## Problem

Let $\{\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}}, \overrightarrow{\mathrm{w}}\}$ be an independent subset of $\mathbb{R}^{\mathrm{n}}$. Is $\{\mathrm{u} \overrightarrow{+} \mathrm{v}, 2 \mathrm{u} \overrightarrow{+} \mathrm{w}, \overrightarrow{\mathrm{v}}-5 \overrightarrow{\mathrm{w}}\}$ linearly independent?

Solution
In order to show the $\{u \overrightarrow{+} v, 2 u \overrightarrow{+} w, \vec{v}-5 \overrightarrow{\mathrm{w}}\}$ is linearly independent, we need to show that

$$
\mathrm{a}(\overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{v}})+\mathrm{b}(2 \overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{w}})+\mathrm{c}(\overrightarrow{\mathrm{v}}-5 \overrightarrow{\mathrm{w}})=\overrightarrow{0}_{\mathrm{n}} \quad \Rightarrow \quad \mathrm{a}=\mathrm{b}=\mathrm{c}=0 .
$$

॥

$$
(\mathrm{a}+2 \mathrm{~b}) \overrightarrow{\mathrm{u}}+(\mathrm{a}+\mathrm{c}) \overrightarrow{\mathrm{v}}+(\mathrm{b}-5 \mathrm{c}) \overrightarrow{\mathrm{w}}=\overrightarrow{0}_{\mathrm{n}} .
$$

because $\{\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}}, \overrightarrow{\mathrm{w}}\}$ is independent $\Downarrow$

$$
\begin{aligned}
\mathrm{a}+2 \mathrm{~b} & =0 \\
\mathrm{a}+\mathrm{c} & =0 \\
\mathrm{~b}-5 \mathrm{c} & =0 .
\end{aligned}
$$

## Problem

Let $\{\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}}, \overrightarrow{\mathrm{w}}\}$ be an independent subset of $\mathbb{R}^{\mathrm{n}}$. Is $\{\mathrm{u} \overrightarrow{+} \mathrm{v}, 2 \mathrm{u} \overrightarrow{+} \mathrm{w}, \overrightarrow{\mathrm{v}}-5 \overrightarrow{\mathrm{w}}\}$ linearly independent?

Solution
In order to show the $\{u \overrightarrow{+} \mathrm{v}, 2 \mathrm{u} \overrightarrow{+} \mathrm{w}, \overrightarrow{\mathrm{v}}-5 \overrightarrow{\mathrm{w}}\}$ is linearly independent, we need to show that

$$
\mathrm{a}(\overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{v}})+\mathrm{b}(2 \overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{w}})+\mathrm{c}(\overrightarrow{\mathrm{v}}-5 \overrightarrow{\mathrm{w}})=\overrightarrow{0}_{\mathrm{n}} \quad \Rightarrow \quad \mathrm{a}=\mathrm{b}=\mathrm{c}=0 .
$$

॥

$$
(\mathrm{a}+2 \mathrm{~b}) \overrightarrow{\mathrm{u}}+(\mathrm{a}+\mathrm{c}) \overrightarrow{\mathrm{v}}+(\mathrm{b}-5 \mathrm{c}) \overrightarrow{\mathrm{w}}=\overrightarrow{0}_{\mathrm{n}} .
$$

because $\{\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}}, \overrightarrow{\mathrm{w}}\}$ is independent $\Downarrow$

$$
\begin{aligned}
& \mathrm{a}+2 \mathrm{~b}=0 \\
& \mathrm{a}+\mathrm{c}=0 \\
& \mathrm{~b}-5 \mathrm{c}=0 . \\
& \Downarrow \\
& \mathrm{a}=\mathrm{b}=\mathrm{c}=0
\end{aligned}
$$

## Problem

Let $\mathrm{X} \subseteq \mathbb{R}^{\mathrm{n}}$ and suppose that $\overrightarrow{0}_{\mathrm{n}} \in \mathrm{X}$. Show that X linearly dependent.

## Problem

Let $\mathrm{X} \subseteq \mathbb{R}^{\mathrm{n}}$ and suppose that $\overrightarrow{0}_{\mathrm{n}} \in \mathrm{X}$. Show that X linearly dependent.

Solution
Let $\mathrm{X}=\left\{\overrightarrow{\mathrm{x}_{1}}, \overrightarrow{\mathrm{x}_{2}}, \ldots, \overrightarrow{\mathrm{x}_{\mathrm{k}}}\right\}$ for some $\mathrm{k} \geq 1$, and suppose $\overrightarrow{\mathrm{x}_{1}}=\overrightarrow{0_{\mathrm{n}}}$. Then

$$
1 \overrightarrow{\mathrm{x}}_{1}+0 \overrightarrow{\mathrm{x}}_{2}+\cdots+0 \overrightarrow{\mathrm{x}}_{\mathrm{k}}=1 \overrightarrow{0}+0 \overrightarrow{\mathrm{x}}_{2}+\cdots+0 \overrightarrow{\mathrm{x}}_{\mathrm{k}}=\overrightarrow{0},
$$

i.e., we have found a nontrivial linear combination of the vectors of X that vanishes. Therefore, X is dependent.

## Example

Let $\vec{u} \in \mathbb{R}^{n}$ and let $S=\{\vec{u}\}$.

1. If $\overrightarrow{\mathrm{u}}=\overrightarrow{0}_{\mathrm{n}}$, then S is dependent (see the previous Problem).
2. If $\overrightarrow{\mathrm{u}} \neq \overrightarrow{0}_{\mathrm{n}}$, then S is independent: if $t \overrightarrow{\mathrm{u}}=\overrightarrow{0}_{\mathrm{n}}$ for some $t \in \mathbb{R}$, then $t=0$. As a consequence,

$$
\mathrm{S}=\{\overrightarrow{\mathrm{u}}\} \text { is independent } \quad \Longleftrightarrow \quad \overrightarrow{\mathrm{u}} \neq \overrightarrow{0}_{\mathrm{n}}
$$

Example
$\mathrm{A}=\left[\begin{array}{rrrrrr}0 & 1 & -1 & 2 & 5 & 1 \\ 0 & 0 & 1 & -3 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$ is a row-echelon matrix.

## Example

$A=\left[\begin{array}{rrrrrr}0 & 1 & -1 & 2 & 5 & 1 \\ 0 & 0 & 1 & -3 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$ is a row-echelon matrix. Treat the nonzero rows of A as transposes of vectors in $\mathbb{R}^{6}$ :

$$
\overrightarrow{\mathrm{u}}_{1}=\left[\begin{array}{r}
0 \\
1 \\
-1 \\
2 \\
5 \\
1
\end{array}\right], \quad \overrightarrow{\mathrm{u}}_{2}=\left[\begin{array}{r}
0 \\
0 \\
1 \\
-3 \\
0 \\
1
\end{array}\right], \quad \overrightarrow{\mathrm{u}}_{3}=\left[\begin{array}{r}
0 \\
0 \\
0 \\
0 \\
1 \\
-2
\end{array}\right]
$$

and suppose that $a \vec{u}_{1}+b \vec{u}_{2}+c \vec{u}_{3}=\overrightarrow{0}_{6}$ for some $a, b, c \in \mathbb{R}$.

## Example (continued)

This results in a system of six equations in three variables, whose augmented matrix is

$$
\left[\begin{array}{rrr|r}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
2 & -3 & 0 & 0 \\
5 & 0 & 1 & 0 \\
1 & 1 & -2 & 0
\end{array}\right]
$$

## Example (continued)

This results in a system of six equations in three variables, whose augmented matrix is

$$
\left[\begin{array}{rrr|r}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
2 & -3 & 0 & 0 \\
5 & 0 & 1 & 0 \\
1 & 1 & -2 & 0
\end{array}\right]
$$

The solution to the system is easily determined to be $\mathrm{a}=\mathrm{b}=\mathrm{c}=0$, so the set $\left\{\overrightarrow{\mathrm{u}}_{1}, \overrightarrow{\mathrm{u}_{2}}, \overrightarrow{\mathrm{u}}_{3}\right\}$ is independent.

## Example (continued)

This results in a system of six equations in three variables, whose augmented matrix is

$$
\left[\begin{array}{rrr|r}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
2 & -3 & 0 & 0 \\
5 & 0 & 1 & 0 \\
1 & 1 & -2 & 0
\end{array}\right]
$$

The solution to the system is easily determined to be $\mathrm{a}=\mathrm{b}=\mathrm{c}=0$, so the set $\left\{\overrightarrow{\mathrm{u}}_{1}, \overrightarrow{\mathrm{u}_{2}}, \overrightarrow{\mathrm{u}}_{3}\right\}$ is independent. Hence, nonzero rows of A are independent.

## Example (continued)

This results in a system of six equations in three variables, whose augmented matrix is

$$
\left[\begin{array}{rrr|r}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
2 & -3 & 0 & 0 \\
5 & 0 & 1 & 0 \\
1 & 1 & -2 & 0
\end{array}\right]
$$

The solution to the system is easily determined to be $\mathrm{a}=\mathrm{b}=\mathrm{c}=0$, so the set $\left\{\overrightarrow{\mathrm{u}}_{1}, \overrightarrow{\mathrm{u}}_{2}, \overrightarrow{\mathrm{u}}_{3}\right\}$ is independent. Hence, nonzero rows of A are independent.

## Remark

In general, the nonzero rows of any row-echelon matrix form an independent set of (row) vectors.

## Theorem

Let $\mathrm{U}=\left\{\overrightarrow{\mathrm{v}}_{1}, \overrightarrow{\mathrm{v}}_{2}, \ldots, \overrightarrow{\mathrm{v}}_{\mathrm{k}}\right\} \subseteq \mathbb{R}^{\mathrm{n}}$ be an independent set. Then any vector $\overrightarrow{\mathrm{x}} \in \operatorname{span}(\mathrm{U})$ has a unique representation as a linear combination of vectors of U .

## Theorem

Let $\mathrm{U}=\left\{\overrightarrow{\mathrm{v}}_{1}, \overrightarrow{\mathrm{v}}_{2}, \ldots, \overrightarrow{\mathrm{v}}_{\mathrm{k}}\right\} \subseteq \mathbb{R}^{\mathrm{n}}$ be an independent set. Then any vector $\overrightarrow{\mathrm{x}} \in \operatorname{span}(\mathrm{U})$ has a unique representation as a linear combination of vectors of U .

Proof.
Suppose that there is a vector $\vec{x} \in \operatorname{span}(U)$ such that

$$
\begin{aligned}
& \overrightarrow{\mathrm{x}}=\mathrm{s}_{1} \overrightarrow{\mathrm{v}}_{1}+\mathrm{s}_{2} \overrightarrow{\mathrm{v}}_{2}+\cdots+\mathrm{s}_{\mathrm{k}} \vec{v}_{\mathrm{k}}, \text { for some } \mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{k}} \in \mathbb{R}, \text { and } \\
& \overrightarrow{\mathrm{x}}=\mathrm{t}_{1} \vec{v}_{1}+\mathrm{t}_{2} \overrightarrow{\mathrm{v}}_{2}+\cdots+\mathrm{t}_{\mathrm{k}} \overrightarrow{\mathrm{v}}_{\mathrm{k}}, \text { for some } \mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{k}} \in \mathbb{R} .
\end{aligned}
$$

## Theorem

Let $\mathrm{U}=\left\{\overrightarrow{\mathrm{v}}_{1}, \overrightarrow{\mathrm{v}}_{2}, \ldots, \overrightarrow{\mathrm{v}}_{\mathrm{k}}\right\} \subseteq \mathbb{R}^{\mathrm{n}}$ be an independent set. Then any vector $\overrightarrow{\mathrm{x}} \in \operatorname{span}(\mathrm{U})$ has a unique representation as a linear combination of vectors of U .

Proof.
Suppose that there is a vector $\overrightarrow{\mathrm{x}} \in \operatorname{span}(\mathrm{U})$ such that

$$
\begin{gathered}
\overrightarrow{\mathrm{x}}=\mathrm{s}_{1} \overrightarrow{\mathrm{v}}_{1}+\mathrm{s}_{2} \overrightarrow{\mathrm{v}}_{2}+\cdots+\mathrm{s}_{\mathrm{k}} \overrightarrow{\mathrm{v}}_{\mathrm{k}}, \text { for some } \mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{k}} \in \mathbb{R}, \text { and } \\
\overrightarrow{\mathrm{x}}=\mathrm{t}_{1} \overrightarrow{\mathrm{v}}_{1}+\mathrm{t}_{2} \overrightarrow{\mathrm{v}}_{2}+\cdots+\mathrm{t}_{\mathrm{k}} \overrightarrow{\mathrm{v}}_{\mathrm{k}}, \text { for some } \mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{k}} \in \mathbb{R} . \\
\Downarrow \\
\qquad \begin{array}{c}
\overrightarrow{0}_{\mathrm{n}}=\overrightarrow{\mathrm{x}}-\overrightarrow{\mathrm{x}}=\left(\mathrm{s}_{1} \overrightarrow{\mathrm{v}}_{1}+\mathrm{s}_{2} \overrightarrow{\mathrm{v}}_{2}+\cdots+\mathrm{s}_{\mathrm{k}} \overrightarrow{\mathrm{v}}_{\mathrm{k}}\right)-\left(\mathrm{t}_{1} \overrightarrow{\mathrm{v}}_{1}+\mathrm{t}_{2} \overrightarrow{\mathrm{v}}_{2}+\cdots+\mathrm{t}_{\mathrm{k}} \overrightarrow{\mathrm{v}}_{\mathrm{k}}\right) \\
=\left(\mathrm{s}_{1}-\mathrm{t}_{1}\right) \overrightarrow{\mathrm{v}}_{1}+\left(\mathrm{s}_{2}-\mathrm{t}_{2}\right) \overrightarrow{\mathrm{v}}_{2}+\cdots+\left(\mathrm{s}_{\mathrm{k}}-\mathrm{t}_{\mathrm{k}}\right) \overrightarrow{\mathrm{v}}_{\mathrm{k}} .
\end{array}
\end{gathered}
$$

## Theorem

Let $\mathrm{U}=\left\{\overrightarrow{\mathrm{v}}_{1}, \overrightarrow{\mathrm{v}}_{2}, \ldots, \overrightarrow{\mathrm{v}}_{\mathrm{k}}\right\} \subseteq \mathbb{R}^{\mathrm{n}}$ be an independent set. Then any vector $\overrightarrow{\mathrm{x}} \in \operatorname{span}(\mathrm{U})$ has a unique representation as a linear combination of vectors of U .

Proof.
Suppose that there is a vector $\vec{x} \in \operatorname{span}(\mathrm{U})$ such that

$$
\begin{aligned}
& \overrightarrow{\mathrm{x}}=\mathrm{s}_{1} \overrightarrow{\mathrm{v}}_{1}+\mathrm{s}_{2} \overrightarrow{\mathrm{v}}_{2}+\cdots+\mathrm{s}_{\mathrm{k}} \overrightarrow{\mathrm{v}}_{\mathrm{k}} \text {, for some } \mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{k}} \in \mathbb{R} \text {, and } \\
& \overrightarrow{\mathrm{x}}=\mathrm{t}_{1} \overrightarrow{\mathrm{v}}_{1}+\mathrm{t}_{2} \overrightarrow{\mathrm{v}}_{2}+\cdots+\mathrm{t}_{\mathrm{k}} \overrightarrow{\mathrm{v}}_{\mathrm{k}} \text {, for some } \mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{k}} \in \mathbb{R} \text {. } \\
& \Downarrow \\
& \overrightarrow{0}_{\mathrm{n}}=\overrightarrow{\mathrm{x}}-\overrightarrow{\mathrm{x}}=\left(\mathrm{s}_{1} \overrightarrow{\mathrm{v}}_{1}+\mathrm{s}_{2} \overrightarrow{\mathrm{v}}_{2}+\cdots+\mathrm{s}_{\mathrm{k}} \overrightarrow{\mathrm{v}}_{\mathrm{k}}\right)-\left(\mathrm{t}_{1} \overrightarrow{\mathrm{v}}_{1}+\mathrm{t}_{2} \overrightarrow{\mathrm{v}}_{2}+\cdots+\mathrm{t}_{\mathrm{k}} \overrightarrow{\mathrm{v}}_{\mathrm{k}}\right) \\
& =\left(\mathrm{s}_{1}-\mathrm{t}_{1}\right) \overrightarrow{\mathrm{v}}_{1}+\left(\mathrm{s}_{2}-\mathrm{t}_{2}\right) \overrightarrow{\mathrm{v}}_{2}+\cdots+\left(\mathrm{s}_{\mathrm{k}}-\mathrm{t}_{\mathrm{k}}\right) \overrightarrow{\mathrm{v}}_{\mathrm{k}} \text {. } \\
& \mathrm{U} \text { is independent } \Downarrow \\
& \mathrm{s}_{1}-\mathrm{t}_{1}=0, \quad \mathrm{~s}_{2}-\mathrm{t}_{2}=0, \quad \cdots, \mathrm{~s}_{\mathrm{k}}-\mathrm{t}_{\mathrm{k}}=0
\end{aligned}
$$

## Theorem

Let $\mathrm{U}=\left\{\overrightarrow{\mathrm{v}}_{1}, \overrightarrow{\mathrm{v}}_{2}, \ldots, \overrightarrow{\mathrm{v}}_{\mathrm{k}}\right\} \subseteq \mathbb{R}^{\mathrm{n}}$ be an independent set. Then any vector $\overrightarrow{\mathrm{x}} \in \operatorname{span}(\mathrm{U})$ has a unique representation as a linear combination of vectors of U .

Proof.
Suppose that there is a vector $\vec{x} \in \operatorname{span}(\mathrm{U})$ such that

$$
\begin{aligned}
& \overrightarrow{\mathrm{x}}=\mathrm{s}_{1} \overrightarrow{\mathrm{v}}_{1}+\mathrm{s}_{2} \overrightarrow{\mathrm{v}}_{2}+\cdots+\mathrm{s}_{\mathrm{k}} \overrightarrow{\mathrm{v}}_{\mathrm{k}} \text {, for some } \mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{k}} \in \mathbb{R} \text {, and } \\
& \overrightarrow{\mathrm{x}}=\mathrm{t}_{1} \overrightarrow{\mathrm{v}}_{1}+\mathrm{t}_{2} \overrightarrow{\mathrm{v}}_{2}+\cdots+\mathrm{t}_{\mathrm{k}} \overrightarrow{\mathrm{v}}_{\mathrm{k}} \text {, for some } \mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{k}} \in \mathbb{R} \text {. } \\
& \Downarrow \\
& \overrightarrow{0}_{\mathrm{n}}=\overrightarrow{\mathrm{x}}-\overrightarrow{\mathrm{x}}=\left(\mathrm{s}_{1} \overrightarrow{\mathrm{v}}_{1}+\mathrm{s}_{2} \overrightarrow{\mathrm{v}}_{2}+\cdots+\mathrm{s}_{\mathrm{k}} \overrightarrow{\mathrm{v}}_{\mathrm{k}}\right)-\left(\mathrm{t}_{1} \overrightarrow{\mathrm{v}}_{1}+\mathrm{t}_{2} \overrightarrow{\mathrm{v}}_{2}+\cdots+\mathrm{t}_{\mathrm{k}} \overrightarrow{\mathrm{v}}_{\mathrm{k}}\right) \\
& =\left(\mathrm{s}_{1}-\mathrm{t}_{1}\right) \overrightarrow{\mathrm{v}}_{1}+\left(\mathrm{s}_{2}-\mathrm{t}_{2}\right) \overrightarrow{\mathrm{v}}_{2}+\cdots+\left(\mathrm{s}_{\mathrm{k}}-\mathrm{t}_{\mathrm{k}}\right) \overrightarrow{\mathrm{v}}_{\mathrm{k}} \text {. } \\
& \mathrm{U} \text { is independent } \Downarrow \\
& \mathrm{s}_{1}-\mathrm{t}_{1}=0, \quad \mathrm{~s}_{2}-\mathrm{t}_{2}=0, \quad \cdots, \mathrm{~s}_{\mathrm{k}}-\mathrm{t}_{\mathrm{k}}=0 \\
& \mathrm{~s}_{1}=\mathrm{t}_{1}, \quad \mathrm{~s}_{2}=\mathrm{t}_{2}, \quad \cdots, \mathrm{~s}_{\mathrm{k}}=\mathrm{t}_{\mathrm{k}} .
\end{aligned}
$$

# Linear Independence 

## Geometric Examples

## Independence, spanning, and matrices

## Bases and Dimension

Finding Bases and Dimension

## Two Geometric Examples

## Two Geometric Examples

## Problem

Suppose that $\vec{u}$ and $\vec{v}$ are nonzero vectors in $\mathbb{R}^{3}$. Prove that $\{\vec{u}, \vec{v}\}$ is dependent if and only if $\vec{u}$ and $\vec{v}$ are parallel.

## Two Geometric Examples

## Problem

Suppose that $\vec{u}$ and $\vec{v}$ are nonzero vectors in $\mathbb{R}^{3}$. Prove that $\{\vec{u}, \vec{v}\}$ is dependent if and only if $\vec{u}$ and $\vec{v}$ are parallel.

Solution
$(\Rightarrow)$ If $\{\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}}\}$ is dependent, then there exist $\mathrm{a}, \mathrm{b} \in \mathbb{R}$ so that $\mathrm{a} \overrightarrow{\mathrm{u}}+\mathrm{b} \overrightarrow{\mathrm{v}}=\overrightarrow{0}_{3}$ with a and b not both zero. By symmetry, we may assume that $\mathrm{a} \neq 0$. Then $\vec{u}=-\frac{b}{a} \vec{v}$, so $\vec{u}$ and $\vec{v}$ are scalar multiples of each other, i.e., $\vec{u}$ and $\vec{v}$ are parallel.

## Two Geometric Examples

## Problem

Suppose that $\vec{u}$ and $\vec{v}$ are nonzero vectors in $\mathbb{R}^{3}$. Prove that $\{\vec{u}, \vec{v}\}$ is dependent if and only if $\vec{u}$ and $\vec{v}$ are parallel.

Solution
$(\Rightarrow)$ If $\{\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}}\}$ is dependent, then there exist $\mathrm{a}, \mathrm{b} \in \mathbb{R}$ so that $\mathrm{a} \overrightarrow{\mathrm{u}}+\mathrm{b} \overrightarrow{\mathrm{v}}=\overrightarrow{0}_{3}$ with a and b not both zero. By symmetry, we may assume that $\mathrm{a} \neq 0$. Then $\overrightarrow{\mathrm{u}}=-\frac{b}{a} \overrightarrow{\mathrm{v}}$, so $\overrightarrow{\mathrm{u}}$ and $\overrightarrow{\mathrm{v}}$ are scalar multiples of each other, i.e., $\overrightarrow{\mathrm{u}}$ and $\overrightarrow{\mathrm{v}}$ are parallel.
$(\leftarrow)$ Conversely, if $\vec{u}$ and $\overrightarrow{\mathrm{v}}$ are parallel, then there exists a $\mathrm{t} \in \mathbb{R}, \mathrm{t} \neq 0$, so that $\overrightarrow{\mathrm{u}}=t \overrightarrow{\mathrm{v}}$. Thus $\overrightarrow{\mathrm{u}}-t \overrightarrow{\mathrm{v}}=\overrightarrow{0}_{3}$, so we have a nontrivial linear combination of $\vec{u}$ and $\vec{v}$ that vanishes. Therefore, $\{\vec{u}, \vec{v}\}$ is dependent.

## Problem

Suppose that $\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}}$ and $\overrightarrow{\mathrm{w}}$ are nonzero vectors in $\mathbb{R}^{3}$, and that $\{\overrightarrow{\mathrm{v}}, \overrightarrow{\mathrm{w}}\}$ is independent. Prove that $\{\vec{u}, \vec{v}, \vec{w}\}$ is independent if and only if $\vec{u} \notin \operatorname{span}\{\overrightarrow{\mathrm{v}}, \overrightarrow{\mathrm{w}}\}$.

## Problem

Suppose that $\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}}$ and $\overrightarrow{\mathrm{w}}$ are nonzero vectors in $\mathbb{R}^{3}$, and that $\{\overrightarrow{\mathrm{v}}, \overrightarrow{\mathrm{w}}\}$ is independent. Prove that $\{\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}}, \overrightarrow{\mathrm{w}}\}$ is independent if and only if $\vec{u} \notin \operatorname{span}\{\overrightarrow{\mathrm{v}}, \overrightarrow{\mathrm{w}}\}$.

Solution
$(\Rightarrow)$ If $\overrightarrow{\mathrm{u}} \in \operatorname{span}\{\overrightarrow{\mathrm{v}}, \overrightarrow{\mathrm{w}}\}$, then there exist $\mathrm{a}, \mathrm{b} \in \mathbb{R}$ so that $\overrightarrow{\mathrm{u}}=\mathrm{a} \overrightarrow{\mathrm{v}}+\mathrm{b} \overrightarrow{\mathrm{w}}$. This implies that $\overrightarrow{\mathrm{u}}-\mathrm{a} \vec{v}-\mathrm{b} \overrightarrow{\mathrm{w}}=\overrightarrow{0}_{3}$, so $\overrightarrow{\mathrm{u}}-\mathrm{a} \vec{v}-\mathrm{b} \overrightarrow{\mathrm{w}}$ is a nontrivial linear combination of $\{\vec{u}, \vec{v}, \vec{w}\}$ that vanishes, and thus $\{\vec{u}, \vec{v}, \vec{w}\}$ is dependent.

## Problem

Suppose that $\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}}$ and $\overrightarrow{\mathrm{w}}$ are nonzero vectors in $\mathbb{R}^{3}$, and that $\{\overrightarrow{\mathrm{v}}, \overrightarrow{\mathrm{w}}\}$ is independent. Prove that $\{\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}}, \overrightarrow{\mathrm{w}}\}$ is independent if and only if $\overrightarrow{\mathrm{u}} \notin \operatorname{span}\{\overrightarrow{\mathrm{v}}, \overrightarrow{\mathrm{w}}\}$.

Solution
$(\Rightarrow)$ If $\overrightarrow{\mathrm{u}} \in \operatorname{span}\{\overrightarrow{\mathrm{v}}, \overrightarrow{\mathrm{w}}\}$, then there exist $\mathrm{a}, \mathrm{b} \in \mathbb{R}$ so that $\overrightarrow{\mathrm{u}}=\mathrm{a} \overrightarrow{\mathrm{v}}+\mathrm{b} \overrightarrow{\mathrm{w}}$. This implies that $\overrightarrow{\mathrm{u}}-\mathrm{a} \overrightarrow{\mathrm{v}}-\mathrm{b} \overrightarrow{\mathrm{w}}=\overrightarrow{0}_{3}$, so $\overrightarrow{\mathrm{u}}-\mathrm{a} \overrightarrow{\mathrm{v}}-\mathrm{b} \overrightarrow{\mathrm{w}}$ is a nontrivial linear combination of $\{\vec{u}, \vec{v}, \vec{w}\}$ that vanishes, and thus $\{\vec{u}, \vec{v}, \vec{w}\}$ is dependent.
$(\Leftarrow)$ Now suppose that $\overrightarrow{\mathrm{u}} \notin \operatorname{span}\{\overrightarrow{\mathrm{v}}, \overrightarrow{\mathrm{w}}\}$, and suppose that there exist
$a, b, c \in \mathbb{R}$ such that $a \vec{u}+b \vec{v}+c \vec{w}=\overrightarrow{0}_{3}$. If $a \neq 0$, then $\vec{u}=-\frac{b}{a} \vec{v}-\frac{c}{a} \vec{w}$, and $\overrightarrow{\mathrm{u}} \in \operatorname{span}\{\overrightarrow{\mathrm{v}}, \overrightarrow{\mathrm{w}}\}$, a contradiction. Therefore, $\mathrm{a}=0$, implying that $\mathrm{b} \overrightarrow{\mathrm{v}}+\mathrm{c} \overrightarrow{\mathrm{w}}=\overrightarrow{0}_{3}$. Since $\{\overrightarrow{\mathrm{v}}, \overrightarrow{\mathrm{w}}\}$ is independent, $\mathrm{b}=\mathrm{c}=0$, and thus $\mathrm{a}=\mathrm{b}=\mathrm{c}=0$, i.e., the only linear combination of $\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}}$ and $\overrightarrow{\mathrm{w}}$ that vanishes is the trivial one. Therefore, $\{\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}}, \overrightarrow{\mathrm{w}}\}$ is independent.

## Linear Independence

## Geometric Examples

Independence, spanning, and matrices

## Bases and Dimension

Finding Bases and Dimension

Independence, spanning, and matrices

## Independence, spanning, and matrices

## Theorem

Suppose A is an $\mathrm{m} \times \mathrm{n}$ matrix with columns $\overrightarrow{\mathrm{c}}_{1}, \overrightarrow{\mathrm{c}}_{2}, \ldots, \overrightarrow{\mathrm{c}}_{\mathrm{n}} \in \mathbb{R}^{\mathrm{m}}$. Then

1. $\left\{\overrightarrow{\mathrm{c}}_{1}, \overrightarrow{\mathrm{c}}_{2}, \ldots, \overrightarrow{\mathrm{c}}_{n}\right\}$ is independent if and only if $A \overrightarrow{\mathrm{x}}=\overrightarrow{0}_{\mathrm{m}}$ with $\overrightarrow{\mathrm{x}} \in \mathbb{R}^{\mathrm{n}}$ implies $\overrightarrow{\mathrm{x}}=\overrightarrow{0}_{\mathrm{n}}$.
2. $\mathbb{R}^{\mathrm{m}}=\operatorname{span}\left\{\overrightarrow{\mathrm{c}}_{1}, \overrightarrow{\mathrm{c}}_{2}, \ldots, \overrightarrow{\mathrm{c}}_{\mathrm{n}}\right\}$ if and only if $\mathrm{A} \overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{b}}$ has a solution for every $\vec{b} \in \mathbb{R}^{m}$.

## Problem

Let $\vec{x}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{k}} \in \mathbb{R}^{\mathrm{n}}$.

1. Are $\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{k}}$ linearly independent?
2. Do $\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{k}}$ span $\mathbb{R}^{\mathrm{n}}$ ?

## Problem

Let $\vec{x}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{k}} \in \mathbb{R}^{\mathrm{n}}$.

1. Are $\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{k}$ linearly independent?
2. Do $\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{k}}$ span $\mathbb{R}^{\mathrm{n}}$ ?

Solution
To answer both question, simply let A be a matrix whose columns are the vectors $\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{k}} \in \mathbb{R}^{\mathrm{n}}$. Find R , a row-echelon form of A.

## Problem

Let $\vec{x}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{k}} \in \mathbb{R}^{\mathrm{n}}$.

1. Are $\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{k}$ linearly independent?
2. Do $\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{k}}$ span $\mathbb{R}^{\mathrm{n}}$ ?

Solution
To answer both question, simply let A be a matrix whose columns are the vectors $\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{k}} \in \mathbb{R}^{\mathrm{n}}$. Find R , a row-echelon form of A .

1. "yes" if and only if each column of $R$ has a leading one.

## Problem

Let $\vec{x}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{k}} \in \mathbb{R}^{\mathrm{n}}$.

1. Are $\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{k}$ linearly independent?
2. Do $\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{k}}$ span $\mathbb{R}^{\mathrm{n}}$ ?

Solution
To answer both question, simply let A be a matrix whose columns are the vectors $\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{k}} \in \mathbb{R}^{\mathrm{n}}$. Find R , a row-echelon form of A .

1. "yes" if and only if each column of R has a leading one.
2. "yes" if and only if each row of R has a leading one.

Problem (first seen earlier)
Let $\vec{u}_{1}=\left[\begin{array}{r}1 \\ -1 \\ 1 \\ -1\end{array}\right], \vec{u}_{2}=\left[\begin{array}{r}-1 \\ 1 \\ 1 \\ 1\end{array}\right], \vec{u}_{3}=\left[\begin{array}{r}1 \\ -1 \\ -1 \\ 1\end{array}\right], \vec{u}_{4}=\left[\begin{array}{r}1 \\ -1 \\ 1 \\ 1\end{array}\right]$.
Show that $\operatorname{span}\left\{\overrightarrow{\mathrm{u}}_{1}, \overrightarrow{\mathrm{u}}_{2}, \overrightarrow{\mathrm{u}}_{3}, \overrightarrow{\mathrm{u}}_{4}\right\} \neq \mathbb{R}^{4}$.

Problem (first seen earlier)
Let $\vec{u}_{1}=\left[\begin{array}{r}1 \\ -1 \\ 1 \\ -1\end{array}\right], \vec{u}_{2}=\left[\begin{array}{r}-1 \\ 1 \\ 1 \\ 1\end{array}\right], \vec{u}_{3}=\left[\begin{array}{r}1 \\ -1 \\ -1 \\ 1\end{array}\right], \vec{u}_{4}=\left[\begin{array}{r}1 \\ -1 \\ 1 \\ 1\end{array}\right]$.
Show that $\operatorname{span}\left\{\overrightarrow{\mathrm{u}}_{1}, \overrightarrow{\mathrm{u}}_{2}, \overrightarrow{\mathrm{u}}_{3}, \overrightarrow{\mathrm{u}}_{4}\right\} \neq \mathbb{R}^{4}$.
Solution
Let $\mathrm{A}=\left[\begin{array}{llll}\overrightarrow{\mathrm{u}}_{1} & \overrightarrow{\mathrm{u}}_{2} & \overrightarrow{\mathrm{u}}_{3} & \overrightarrow{\mathrm{u}}_{4}\end{array}\right]$.

Problem (first seen earlier)
Let $\vec{u}_{1}=\left[\begin{array}{r}1 \\ -1 \\ 1 \\ -1\end{array}\right], \vec{u}_{2}=\left[\begin{array}{r}-1 \\ 1 \\ 1 \\ 1\end{array}\right], \vec{u}_{3}=\left[\begin{array}{r}1 \\ -1 \\ -1 \\ 1\end{array}\right], \vec{u}_{4}=\left[\begin{array}{r}1 \\ -1 \\ 1 \\ 1\end{array}\right]$.
Show that $\operatorname{span}\left\{\overrightarrow{\mathrm{u}}_{1}, \overrightarrow{\mathrm{u}}_{2}, \overrightarrow{\mathrm{u}}_{3}, \overrightarrow{\mathrm{u}}_{4}\right\} \neq \mathbb{R}^{4}$.
Solution
Let $\mathrm{A}=\left[\begin{array}{llll}\overrightarrow{\mathrm{u}}_{1} & \overrightarrow{\mathrm{u}}_{2} & \overrightarrow{\mathrm{u}}_{3} & \overrightarrow{\mathrm{u}}_{4}\end{array}\right]$. Apply row operations to get R , a row-echelon form of A:

$$
\left[\begin{array}{rrrr}
1 & -1 & 1 & 1 \\
-1 & 1 & -1 & -1 \\
1 & 1 & -1 & 1 \\
-1 & 1 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & -1 & 1 & 1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Problem (first seen earlier)
Let $\overrightarrow{\mathrm{u}}_{1}=\left[\begin{array}{r}1 \\ -1 \\ 1 \\ -1\end{array}\right], \overrightarrow{\mathrm{u}}_{2}=\left[\begin{array}{r}-1 \\ 1 \\ 1 \\ 1\end{array}\right], \overrightarrow{\mathrm{u}}_{3}=\left[\begin{array}{r}1 \\ -1 \\ -1 \\ 1\end{array}\right], \overrightarrow{\mathrm{u}}_{4}=\left[\begin{array}{r}1 \\ -1 \\ 1 \\ 1\end{array}\right]$.
Show that $\operatorname{span}\left\{\overrightarrow{\mathrm{u}}_{1}, \overrightarrow{\mathrm{u}}_{2}, \overrightarrow{\mathrm{u}}_{3}, \overrightarrow{\mathrm{u}}_{4}\right\} \neq \mathbb{R}^{4}$.
Solution
Let $\mathrm{A}=\left[\begin{array}{llll}\overrightarrow{\mathrm{u}}_{1} & \overrightarrow{\mathrm{u}}_{2} & \overrightarrow{\mathrm{u}}_{3} & \overrightarrow{\mathrm{u}}_{4}\end{array}\right]$. Apply row operations to get R , a row-echelon form of A:

$$
\left[\begin{array}{rrrr}
1 & -1 & 1 & 1 \\
-1 & 1 & -1 & -1 \\
1 & 1 & -1 & 1 \\
-1 & 1 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & -1 & 1 & 1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Since the last row of $R$ consists only of zeros, $R \vec{x}=\vec{e}_{4}$ has no solution $\vec{x} \in \mathbb{R}^{4}$, implying that there is a $\vec{b} \in \mathbb{R}^{4}$ so that $A \vec{x}=\vec{b}$ has no solution $\overrightarrow{\mathrm{x}} \in \mathbb{R}^{4}$. By previous Theorem, $\mathbb{R}^{4} \neq \operatorname{span}\left\{\overrightarrow{\mathrm{u}}_{1}, \overrightarrow{\mathrm{u}}_{2}, \overrightarrow{\mathrm{u}}_{3}, \overrightarrow{\mathrm{u}}_{4}\right\}$.

## Theorem

Let A be an $\mathrm{n} \times \mathrm{n}$ matrix. The following are equivalent.

1. A is invertible.
2. The columns of A are independent.
3. The columns of $A \operatorname{span} \mathbb{R}^{n}$.
4. The rows of A are independent, i.e., the columns of $\mathrm{A}^{\mathrm{T}}$ are independent.
5. The rows of A span the set of all $1 \times \mathrm{n}$ rows, i.e., the columns of $\mathrm{A}^{\mathrm{T}}$ $\operatorname{span} \mathbb{R}^{\mathrm{n}}$.

Problem ( revisited )
Let $\overrightarrow{\mathrm{u}}_{1}=\left[\begin{array}{r}1 \\ -1 \\ 1 \\ -1\end{array}\right], \vec{u}_{2}=\left[\begin{array}{r}-1 \\ 1 \\ 1 \\ 1\end{array}\right], \vec{u}_{3}=\left[\begin{array}{r}1 \\ -1 \\ -1 \\ 1\end{array}\right], \overrightarrow{\mathrm{u}}_{4}=\left[\begin{array}{r}1 \\ -1 \\ 1 \\ 1\end{array}\right]$.
Show that $\operatorname{span}\left\{\overrightarrow{\mathrm{u}}_{1}, \overrightarrow{\mathrm{u}}_{2}, \overrightarrow{\mathrm{u}}_{3}, \overrightarrow{\mathrm{u}}_{4}\right\} \neq \mathbb{R}^{4}$.

Problem ( revisited )
Let $\overrightarrow{\mathrm{u}}_{1}=\left[\begin{array}{r}1 \\ -1 \\ 1 \\ -1\end{array}\right], \overrightarrow{\mathrm{u}}_{2}=\left[\begin{array}{r}-1 \\ 1 \\ 1 \\ 1\end{array}\right], \overrightarrow{\mathrm{u}}_{3}=\left[\begin{array}{r}1 \\ -1 \\ -1 \\ 1\end{array}\right], \overrightarrow{\mathrm{u}}_{4}=\left[\begin{array}{r}1 \\ -1 \\ 1 \\ 1\end{array}\right]$.
Show that $\operatorname{span}\left\{\overrightarrow{\mathrm{u}}_{1}, \overrightarrow{\mathrm{u}}_{2}, \overrightarrow{\mathrm{u}}_{3}, \overrightarrow{\mathrm{u}}_{4}\right\} \neq \mathbb{R}^{4}$.
Solution
Let $A=\left[\begin{array}{llll}\overrightarrow{\mathrm{u}}_{1} & \overrightarrow{\mathrm{u}}_{2} & \overrightarrow{\mathrm{u}}_{3} & \overrightarrow{\mathrm{u}}_{4}\end{array}\right]=\left[\begin{array}{rrrr}1 & -1 & 1 & 1 \\ -1 & 1 & -1 & -1 \\ 1 & 1 & -1 & 1 \\ -1 & 1 & 1 & 1\end{array}\right]$.
By the previous Theorem, the columns of A span $\mathbb{R}^{4}$ if and only if A is invertible. Since $\operatorname{det}(\mathrm{A})=0$ (row 2 is ( -1 ) times row 1 ), A is not invertible, and thus $\left\{\overrightarrow{\mathrm{u}}_{1}, \overrightarrow{\mathrm{u}}_{2}, \overrightarrow{\mathrm{u}}_{3}, \overrightarrow{\mathrm{u}}_{4}\right\}$ does not span $\mathbb{R}^{4}$.

## Problem

Let

$$
\overrightarrow{\mathrm{u}}=\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right], \overrightarrow{\mathrm{v}}=\left[\begin{array}{r}
3 \\
2 \\
-1
\end{array}\right], \overrightarrow{\mathrm{w}}=\left[\begin{array}{r}
3 \\
5 \\
-2
\end{array}\right] .
$$

Is $\{\vec{u}, \vec{v}, \vec{w}\}$ independent?

## Problem

Let

$$
\overrightarrow{\mathrm{u}}=\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right], \overrightarrow{\mathrm{v}}=\left[\begin{array}{r}
3 \\
2 \\
-1
\end{array}\right], \overrightarrow{\mathrm{w}}=\left[\begin{array}{r}
3 \\
5 \\
-2
\end{array}\right] .
$$

Is $\{\vec{u}, \vec{v}, \vec{w}\}$ independent?

Solution
Let $A=\left[\begin{array}{lll}\vec{u} & \vec{v} & \vec{w}\end{array}\right]$. From the previous Theorem, $\{\vec{u}, \vec{v}, \overrightarrow{\mathrm{w}}\}$ is independent if and only if A is invertible.

Since

$$
\operatorname{det}(A)=\operatorname{det}\left[\begin{array}{rrr}
1 & 3 & 3 \\
-1 & 2 & 5 \\
0 & -1 & -2
\end{array}\right]=-2
$$

and $-2 \neq 0$, A is invertible, and therefore $\{\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}}, \overrightarrow{\mathrm{w}}\}$ is an independent subset of $\mathbb{R}^{3}$.

Remark
Notice that $\{\vec{u}, \vec{v}, \vec{w}\}$ also spans $\mathbb{R}^{3}$.

## Linear Independence

## Geometric Examples

Independence, spanning, and matrices

## Bases and Dimension

Finding Bases and Dimension

## Bases and Dimension

## Bases and Dimension

Theorem (Fundamental Theorem)
Let U be a subspace of $\mathbb{R}^{\mathrm{n}}$ that is spanned by m vectors. If U contains a subset of k linearly independent vectors, then $\mathrm{k} \leq \mathrm{m}$.

## Bases and Dimension

## Theorem (Fundamental Theorem)

Let $U$ be a subspace of $\mathbb{R}^{n}$ that is spanned by $m$ vectors. If $U$ contains a subset of k linearly independent vectors, then $\mathrm{k} \leq \mathrm{m}$.

## Definition

Let $U$ be a subspace of $\mathbb{R}^{n}$. A set $\left\{\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{m}}\right\}$ is a basis of U if

1. $\left\{\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{m}}\right\}$ is linearly independent;
2. $\mathrm{U}=\operatorname{span}\left\{\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{m}}\right\}$.

## Bases and Dimension

## Theorem (Fundamental Theorem)

Let $U$ be a subspace of $\mathbb{R}^{n}$ that is spanned by $m$ vectors. If $U$ contains a subset of k linearly independent vectors, then $\mathrm{k} \leq \mathrm{m}$.

## Definition

Let $U$ be a subspace of $\mathbb{R}^{n}$. A set $\left\{\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{m}}\right\}$ is a basis of U if

1. $\left\{\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{m}}\right\}$ is linearly independent;
2. $\mathrm{U}=\operatorname{span}\left\{\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{m}}\right\}$.

As a consequence of all this, if $\left\{\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{m}}\right\}$ is a basis of a subspace U , then every $\overrightarrow{\mathrm{u}} \in \mathrm{U}$ has a unique representation as a linear combination of the vectors $\overrightarrow{\mathrm{x}}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{m}$.

## Example

The subset $\left\{\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}\right\}$ is a basis of $\mathbb{R}^{n}$, called the standard basis of $\mathbb{R}^{n}$. (We've already seen that $\left\{\overrightarrow{\mathrm{e}}_{1}, \overrightarrow{\mathrm{e}}_{2}, \ldots, \overrightarrow{\mathrm{e}}_{\mathrm{n}}\right\}$ is linearly independent and that $\mathbb{R}^{\mathrm{n}}=\operatorname{span}\left\{\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{\mathrm{n}}\right\}$.)

## Example

The subset $\left\{\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}\right\}$ is a basis of $\mathbb{R}^{n}$, called the standard basis of $\mathbb{R}^{n}$. (We've already seen that $\left\{\overrightarrow{\vec{e}}_{1}, \overrightarrow{\mathrm{e}}_{2}, \ldots, \overrightarrow{\mathrm{e}}_{\mathrm{n}}\right\}$ is linearly independent and that $\mathbb{R}^{\mathrm{n}}=\operatorname{span}\left\{\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{\mathrm{n}}\right\}$.)

## Example

In a previous problem, we saw that $\mathbb{R}^{4}=\operatorname{span}(\mathrm{S})$ where

$$
\mathrm{S}=\left\{\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]\right\} .
$$

S is also linearly independent (prove this). Therefore, S is a basis of $\mathbb{R}^{4}$.

Theorem (Invariance Theorem)
If $\left\{\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{m}}\right\}$ and $\left\{\overrightarrow{\mathrm{y}}_{1}, \overrightarrow{\mathrm{y}}_{2}, \ldots, \overrightarrow{\mathrm{y}}_{\mathrm{k}}\right\}$ are bases of a subspace U of $\mathbb{R}^{\mathrm{n}}$, then $\mathrm{m}=\mathrm{k}$.

## Theorem (Invariance Theorem)

If $\left\{\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{m}}\right\}$ and $\left\{\overrightarrow{\mathrm{y}}_{1}, \overrightarrow{\mathrm{y}}_{2}, \ldots, \overrightarrow{\mathrm{y}}_{\mathrm{k}}\right\}$ are bases of a subspace U of $\mathbb{R}^{\mathrm{n}}$, then $\mathrm{m}=\mathrm{k}$.

Proof.
Let $S=\left\{\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{m}\right\}$ and $T=\left\{\vec{y}_{1}, \vec{y}_{2}, \ldots, \vec{y}_{k}\right\}$. Since $S$ spans $U$ and $T$ is independent, it follows from the Fundamental Theorem that $\mathrm{k} \leq \mathrm{m}$. Also, since T spans U and S is independent, it follows from the Fundamental Theorem that $\mathrm{m} \leq \mathrm{k}$. Since $\mathrm{k} \leq \mathrm{m}$ and $\mathrm{m} \leq \mathrm{k}, \mathrm{k}=\mathrm{m}$.

## Theorem (Invariance Theorem)

If $\left\{\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{m}}\right\}$ and $\left\{\overrightarrow{\mathrm{y}}_{1}, \overrightarrow{\mathrm{y}}_{2}, \ldots, \overrightarrow{\mathrm{y}}_{\mathrm{k}}\right\}$ are bases of a subspace U of $\mathbb{R}^{\mathrm{n}}$, then $m=k$.

Proof.
Let $S=\left\{\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{m}\right\}$ and $T=\left\{\vec{y}_{1}, \vec{y}_{2}, \ldots, \vec{y}_{k}\right\}$. Since $S$ spans $U$ and $T$ is independent, it follows from the Fundamental Theorem that $\mathrm{k} \leq \mathrm{m}$. Also, since T spans U and S is independent, it follows from the Fundamental Theorem that $\mathrm{m} \leq \mathrm{k}$. Since $\mathrm{k} \leq \mathrm{m}$ and $\mathrm{m} \leq \mathrm{k}, \mathrm{k}=\mathrm{m}$.

## Definition

The dimension of a subspace U of $\mathbb{R}^{\mathrm{n}}$ is the number of vectors in any basis of U , and is denoted $\operatorname{dim}(\mathrm{U})$.

## Problem

In $\mathbb{R}^{n}$, what is the dimension of the subspace $\left\{\overrightarrow{0}_{n}\right\}$ ?

## Problem

In $\mathbb{R}^{n}$, what is the dimension of the subspace $\left\{\overrightarrow{0}_{n}\right\}$ ?
Solution
The only basis of the zero subspace is the empty set, $\emptyset$ :
(i) the empty set is (trivially) independent, and
(ii) any linear combination of no vectors is the zero vector.

Therefore, the zero subspace has dimension zero.

## Problem

In $\mathbb{R}^{n}$, what is the dimension of the subspace $\left\{\overrightarrow{0}_{n}\right\}$ ?

Solution
The only basis of the zero subspace is the empty set, $\emptyset$ :
(i) the empty set is (trivially) independent, and
(ii) any linear combination of no vectors is the zero vector.

Therefore, the zero subspace has dimension zero.

## Example

Since $\left\{\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{\mathrm{n}}\right\}$ is a basis of $\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{n}}$ has dimension n . This is why the Cartesian plane, $\mathbb{R}^{2}$, is called 2-dimensional, and $\mathbb{R}^{3}$ is called 3 -dimensional.

## Problem

Let

$$
\mathrm{U}=\left\{\left.\left[\begin{array}{l}
\mathrm{a} \\
\mathrm{~b} \\
\mathrm{c} \\
\mathrm{~d}
\end{array}\right] \in \mathbb{R}^{4} \right\rvert\, \mathrm{a}-\mathrm{b}=\mathrm{d}-\mathrm{c}\right\} .
$$

Show that U is a subspace of $\mathbb{R}^{4}$, find a basis of U , and find $\operatorname{dim}(\mathrm{U})$.

## Solution

The condition $\mathrm{a}-\mathrm{b}=\mathrm{d}-\mathrm{c}$ is equivalent to the condition $\mathrm{a}=\mathrm{b}-\mathrm{c}+\mathrm{d}$, so we may write

$$
\mathrm{U}=\left\{\left[\begin{array}{c}
\mathrm{b}-\mathrm{c}+\mathrm{d} \\
\mathrm{~b} \\
\mathrm{c} \\
\mathrm{~d}
\end{array}\right] \in \mathbb{R}^{4}\right\}=\left\{\left.\mathrm{b}\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]+\mathrm{c}\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right]+\mathrm{d}\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right] \right\rvert\, \mathrm{b}, \mathrm{c}, \mathrm{~d} \in \mathbb{R}\right\}
$$

## Solution

The condition $\mathrm{a}-\mathrm{b}=\mathrm{d}-\mathrm{c}$ is equivalent to the condition $\mathrm{a}=\mathrm{b}-\mathrm{c}+\mathrm{d}$, so we may write
$\mathrm{U}=\left\{\left[\begin{array}{c}\mathrm{b}-\mathrm{c}+\mathrm{d} \\ \mathrm{b} \\ \mathrm{c} \\ \mathrm{d}\end{array}\right] \in \mathbb{R}^{4}\right\}=\left\{\left.\mathrm{b}\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]+\mathrm{c}\left[\begin{array}{c}-1 \\ 0 \\ 1 \\ 0\end{array}\right]+\mathrm{d}\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right] \right\rvert\, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathbb{R}\right\}$
This shows that $U$ is a subspace of $\mathbb{R}^{4}$, since $U=\operatorname{span}\left\{\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \overrightarrow{\mathrm{x}}_{3}\right\}$ where

$$
\begin{aligned}
\overrightarrow{\mathrm{x}}_{1} & =\left[\begin{array}{llll}
1 & 1 & 0 & 0
\end{array}\right]^{\mathrm{T}} \\
\overrightarrow{\mathrm{x}}_{2} & =\left[\begin{array}{llll}
-1 & 0 & 1 & 0
\end{array}\right]^{\mathrm{T}} \\
\overrightarrow{\mathrm{x}}_{3} & =\left[\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right]^{\mathrm{T}}
\end{aligned}
$$

Solution (continued)
Furthermore,

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]\right\}
$$

is linearly independent, as can be seen by taking the reduced row-echelon (RRE) form of the matrix whose columns are $\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}$ and $\overrightarrow{\mathrm{x}}_{3}$.

$$
\left[\begin{array}{rrr}
1 & -1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Solution (continued)
Furthermore,

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]\right\}
$$

is linearly independent, as can be seen by taking the reduced row-echelon (RRE) form of the matrix whose columns are $\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}$ and $\overrightarrow{\mathrm{x}}_{3}$.

$$
\left[\begin{array}{rrr}
1 & -1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Since every column of the RRE matrix has a leading one, the columns are linearly independent.

Therefore $\left\{\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \overrightarrow{\mathrm{x}}_{3}\right\}$ is linearly independent and spans U , so is a basis of U , and hence U has dimension three.

## Example (Important!)

Suppose that $B=\left\{\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{n}\right\}$ is a basis of $\mathbb{R}^{n}$ and that $A$ is an $n \times n$ invertible matrix. Let $D=\left\{A \vec{x}_{1}, A \vec{x}_{2}, \ldots, A \vec{x}_{n}\right\}$, and let

$$
\mathrm{X}=\left[\begin{array}{llll}
\overrightarrow{\mathrm{x}}_{1} & \overrightarrow{\mathrm{x}}_{2} & \cdots & \overrightarrow{\mathrm{x}}_{\mathrm{n}}
\end{array}\right] .
$$

Since B is a basis of $\mathbb{R}^{\mathrm{n}}, \mathrm{B}$ is independent (also a spanning set of $\mathbb{R}^{\mathrm{n}}$ ); thus X is invertible. Now, because A and X are invertible, so is

$$
\mathrm{AX}=\left[\begin{array}{llll}
\mathrm{A} \overrightarrow{\mathrm{x}}_{1} & \mathrm{~A} \overrightarrow{\mathrm{x}}_{2} & \cdots & \mathrm{~A} \overrightarrow{\mathrm{x}}_{\mathrm{n}}
\end{array}\right] .
$$

Therefore, the columns of AX are independent and span $\mathbb{R}^{\mathrm{n}}$. Since the columns of AX are the vectors of $\mathrm{D}, \mathrm{D}$ is a basis of $\mathbb{R}^{\mathrm{n}}$.

## Linear Independence

Geometric Examples<br>Independence, spanning, and matrices<br>Bases and Dimension

Finding Bases and Dimension

Finding Bases and Dimension

## Finding Bases and Dimension

## Theorem

Let U be a subspace of $\mathbb{R}^{\mathrm{n}}$. Then

1. U has a basis, and $\operatorname{dim}(\mathrm{U}) \leq n$.
2. Any independent set of U can be extended (by adding vectors) to a basis of U .
3. Any spanning set of U can be cut down (by deleting vectors) to a basis of U .

## Example

Previously, we showed that

$$
U=\left\{\left.\left[\begin{array}{l}
\mathrm{a} \\
\mathrm{~b} \\
\mathrm{c} \\
\mathrm{~d}
\end{array}\right] \in \mathbb{R}^{4} \right\rvert\, a-\mathrm{b}=\mathrm{d}-\mathrm{c}\right\}
$$

is a subspace of $\mathbb{R}^{4}$, and that $\operatorname{dim}(\mathrm{U})=3$.

## Example

Previously, we showed that

$$
U=\left\{\left.\left[\begin{array}{l}
\mathrm{a} \\
\mathrm{~b} \\
\mathrm{c} \\
\mathrm{~d}
\end{array}\right] \in \mathbb{R}^{4} \right\rvert\, a-\mathrm{b}=\mathrm{d}-\mathrm{c}\right\}
$$

is a subspace of $\mathbb{R}^{4}$, and that $\operatorname{dim}(\mathrm{U})=3$. Also, it is easy to verify that

$$
\mathbf{S}=\left\{\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
3 \\
2
\end{array}\right]\right\},
$$

is an independent subset of U .

## Example

Previously, we showed that

$$
U=\left\{\left.\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right] \in \mathbb{R}^{4} \right\rvert\, a-b=d-c\right\}
$$

is a subspace of $\mathbb{R}^{4}$, and that $\operatorname{dim}(\mathrm{U})=3$. Also, it is easy to verify that

$$
\mathrm{S}=\left\{\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
3 \\
2
\end{array}\right]\right\}
$$

is an independent subset of U .

By a previous Theorem, S can be extended to a basis of U . To do so, find a vector in U that is not in $\operatorname{span}(\mathrm{S})$.

Example (continued)

$$
\left[\begin{array}{lll}
1 & 2 & ? \\
1 & 3 & ? \\
1 & 3 & ? \\
1 & 2 & ?
\end{array}\right]
$$

Example (continued)

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 2 & ? \\
1 & 3 & ? \\
1 & 3 & ? \\
1 & 2 & ?
\end{array}\right]} \\
{\left[\begin{array}{rrr}
1 & 2 & 1 \\
1 & 3 & 0 \\
1 & 3 & -1 \\
1 & 2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]}
\end{gathered}
$$

Example (continued)

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 2 & ? \\
1 & 3 & ? \\
1 & 3 & ? \\
1 & 2 & ?
\end{array}\right]} \\
{\left[\begin{array}{rrr}
1 & 2 & 1 \\
1 & 3 & 0 \\
1 & 3 & -1 \\
1 & 2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]}
\end{gathered}
$$

Therefore, S can be extended to the basis

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
3 \\
2
\end{array}\right],\left[\begin{array}{r}
1 \\
0 \\
-1 \\
0
\end{array}\right]\right\} \text { of } \mathrm{U}
$$

## Problem

Let

$$
\overrightarrow{\mathrm{u}}_{1}=\left[\begin{array}{r}
-1 \\
2 \\
1 \\
0
\end{array}\right], \quad \overrightarrow{\mathrm{u}}_{2}=\left[\begin{array}{r}
2 \\
0 \\
3 \\
-1
\end{array}\right], \quad \overrightarrow{\mathrm{u}}_{3}=\left[\begin{array}{r}
4 \\
4 \\
11 \\
-3
\end{array}\right], \quad \overrightarrow{\mathrm{u}}_{4}=\left[\begin{array}{r}
3 \\
-2 \\
2 \\
-1
\end{array}\right],
$$

and let $U=\operatorname{span}\left\{\overrightarrow{\mathrm{u}}_{1}, \overrightarrow{\mathrm{u}}_{2}, \overrightarrow{\mathrm{u}}_{3}, \overrightarrow{\mathrm{u}}_{4}\right\}$. Find a basis of U that is a subset of $\left\{\overrightarrow{\mathrm{u}}_{1}, \overrightarrow{\mathrm{u}}_{2}, \overrightarrow{\mathrm{u}}_{3}, \overrightarrow{\mathrm{u}}_{4}\right\}$, and find $\operatorname{dim}(\mathrm{U})$.

## Problem

Let

$$
\overrightarrow{\mathrm{u}}_{1}=\left[\begin{array}{r}
-1 \\
2 \\
1 \\
0
\end{array}\right], \quad \overrightarrow{\mathrm{u}}_{2}=\left[\begin{array}{r}
2 \\
0 \\
3 \\
-1
\end{array}\right], \quad \overrightarrow{\mathrm{u}}_{3}=\left[\begin{array}{r}
4 \\
4 \\
11 \\
-3
\end{array}\right], \quad \overrightarrow{\mathrm{u}}_{4}=\left[\begin{array}{r}
3 \\
-2 \\
2 \\
-1
\end{array}\right],
$$

and let $U=\operatorname{span}\left\{\overrightarrow{\mathrm{u}}_{1}, \overrightarrow{\mathrm{u}}_{2}, \overrightarrow{\mathrm{u}}_{3}, \overrightarrow{\mathrm{u}}_{4}\right\}$. Find a basis of $U$ that is a subset of $\left\{\vec{u}_{1}, \overrightarrow{\mathrm{u}}_{2}, \overrightarrow{\mathrm{u}}_{3}, \overrightarrow{\mathrm{u}}_{4}\right\}$, and find $\operatorname{dim}(\mathrm{U})$.

Solution
Suppose $\mathrm{a}_{1} \overrightarrow{\mathrm{u}}_{1}+\mathrm{a}_{2} \overrightarrow{\mathrm{u}}_{2}+\mathrm{a}_{3} \overrightarrow{\mathrm{u}}_{3}+\mathrm{a}_{4} \overrightarrow{\mathrm{u}}_{4}=\overrightarrow{0}$. Solve for $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4} ;$ if some $\mathrm{a}_{\mathrm{i}} \neq 0,1 \leq \mathrm{i} \leq 4$, then $\overrightarrow{\mathrm{u}}_{\mathrm{i}}$ can be removed from the set $\left\{\overrightarrow{\mathrm{u}}_{1}, \overrightarrow{\mathrm{u}}_{2}, \vec{u}_{3}, \overrightarrow{\mathrm{u}}_{4}\right\}$, and the resulting set still spans U . Repeat this on the resulting set until a linearly independent set is obtained.

One solution is $\mathrm{B}=\left\{\overrightarrow{\mathrm{u}}_{1}, \overrightarrow{\mathrm{u}}_{2}\right\}$. Then $\mathrm{U}=\operatorname{span}(\mathrm{B})$ and B is linearly independent. Therefore B is a basis of U , and thus $\operatorname{dim}(\mathrm{U})=2$.

## Remark

In the next section, we will learn an efficient technique for solving this type of problem.

## Theorem

Let $U$ be a subspace of $\mathbb{R}^{n}$ with $\operatorname{dim}(U)=m$, and let $B=\left\{\vec{x}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{m}}\right\}$ be a subset of U . Then B is linearly independent if and only if B spans U.

## Theorem

Let U be a subspace of $\mathbb{R}^{\mathrm{n}}$ with $\operatorname{dim}(\mathrm{U})=\mathrm{m}$, and let $\mathrm{B}=\left\{\vec{x}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{m}}\right\}$ be a subset of U . Then B is linearly independent if and only if B spans U.

Proof.
$(\Rightarrow)$ Suppose $B$ is linearly independent. If $\operatorname{span}(B) \neq U$, then extend $B$ to a basis $\mathrm{B}^{\prime}$ of U by adding appropriate vectors from U . Then $\mathrm{B}^{\prime}$ is a basis of size more than $m=\operatorname{dim}(\mathrm{U})$, which is impossible. Therefore, $\operatorname{span}(\mathrm{B})=\mathrm{U}$, and hence B is a basis of U .

Theorem
Let U be a subspace of $\mathbb{R}^{\mathrm{n}}$ with $\operatorname{dim}(\mathrm{U})=\mathrm{m}$, and let $\mathrm{B}=\left\{\vec{x}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{m}}\right\}$ be a subset of U . Then B is linearly independent if and only if B spans U .

Proof.
$(\Rightarrow)$ Suppose $B$ is linearly independent. If $\operatorname{span}(B) \neq U$, then extend $B$ to a basis $\mathrm{B}^{\prime}$ of U by adding appropriate vectors from U . Then $\mathrm{B}^{\prime}$ is a basis of size more than $m=\operatorname{dim}(U)$, which is impossible. Therefore, $\operatorname{span}(B)=U$, and hence B is a basis of U .
$(\Leftarrow)$ Conversely, suppose $\operatorname{span}(\mathrm{B})=\mathrm{U}$. If B is not linearly independent, then cut B down to a basis $\mathrm{B}^{\prime}$ of U by deleting appropriate vectors. But then $\mathrm{B}^{\prime}$ is a basis of size less than $\mathrm{m}=\operatorname{dim}(\mathrm{U})$, which is impossible. Therefore, B is linearly independent, and hence B is a basis of U.

## Remark

Let U be a subspace of $\mathbb{R}^{\mathrm{n}}$ and suppose $\mathrm{B} \subseteq \mathrm{U}$.

- If $B$ spans $U$ and $|B|=\operatorname{dim}(U)$, then $B$ is also independent, and hence $B$ is a basis of U .
- If $B$ is independent and $|B|=\operatorname{dim}(U)$, then $B$ also spans $U$, and hence $B$ is a basis of $U$.

Therefore, if $|B|=\operatorname{dim}(U)$, in order to prove that $B$ is a basis, it is sufficient to prove either of the following two statements:

1. B is independent
2. B spans U

Theorem
Let U and W be subspace of $\mathbb{R}^{\mathrm{n}}$, and suppose that $\mathrm{U} \subseteq \mathrm{W}$. Then

1. $\operatorname{dim}(\mathrm{U}) \leq \operatorname{dim}(\mathrm{W})$.
2. If $\operatorname{dim}(\mathrm{U})=\operatorname{dim}(\mathrm{W})$, then $\mathrm{U}=\mathrm{W}$.

## Theorem

Let U and W be subspace of $\mathbb{R}^{\mathrm{n}}$, and suppose that $\mathrm{U} \subseteq \mathrm{W}$. Then

1. $\operatorname{dim}(\mathrm{U}) \leq \operatorname{dim}(\mathrm{W})$.
2. If $\operatorname{dim}(\mathrm{U})=\operatorname{dim}(\mathrm{W})$, then $\mathrm{U}=\mathrm{W}$.

Proof.
Let $\operatorname{dim}(\mathrm{W})=\mathrm{k}$, and let B be a basis of U .

1. If $\operatorname{dim}(\mathrm{U})>k$, then B is a subset of independent vectors of W with $|\mathrm{B}|=\operatorname{dim}(\mathrm{U})>\mathrm{k}$, which contradicts the Fundamental Theorem.

## Theorem

Let U and W be subspace of $\mathbb{R}^{\mathrm{n}}$, and suppose that $\mathrm{U} \subseteq \mathrm{W}$. Then

1. $\operatorname{dim}(\mathrm{U}) \leq \operatorname{dim}(\mathrm{W})$.
2. If $\operatorname{dim}(\mathrm{U})=\operatorname{dim}(\mathrm{W})$, then $\mathrm{U}=\mathrm{W}$.

Proof.
Let $\operatorname{dim}(\mathrm{W})=\mathrm{k}$, and let B be a basis of U .

1. If $\operatorname{dim}(\mathrm{U})>k$, then $B$ is a subset of independent vectors of W with $|\mathrm{B}|=\operatorname{dim}(\mathrm{U})>\mathrm{k}$, which contradicts the Fundamental Theorem.
2. If $\operatorname{dim}(\mathrm{U})=\operatorname{dim}(\mathrm{W})$, then $B$ is an independent subset of $W$ containing $\mathrm{k}=\operatorname{dim}(\mathrm{W})$ vectors. Therefore, B spans W , so B is a basis of W , and $\mathrm{U}=\operatorname{span}(\mathrm{B})=\mathrm{W}$.

## Example

Any subspace U of $\mathbb{R}^{2}$, other than $\left\{\overrightarrow{0}_{2}\right\}$ and $\mathbb{R}^{2}$ itself, must have dimension one, and thus has a basis consisting of one nonzero vector, say $\overrightarrow{\mathrm{u}}$. Thus $\mathrm{U}=\operatorname{span}\{\overrightarrow{\mathrm{u}}\}$, and hence is a line through the origin.

## Example

Any subspace $U$ of $\mathbb{R}^{2}$, other than $\left\{\overrightarrow{0}_{2}\right\}$ and $\mathbb{R}^{2}$ itself, must have dimension one, and thus has a basis consisting of one nonzero vector, say $\overrightarrow{\mathrm{u}}$. Thus $\mathrm{U}=\operatorname{span}\{\overrightarrow{\mathrm{u}}\}$, and hence is a line through the origin.

## Example

Any subspace $U$ of $\mathbb{R}^{3}$, other than $\left\{\overrightarrow{0}_{3}\right\}$ and $\mathbb{R}^{3}$ itself, must have dimension one or two. If $\operatorname{dim}(\mathrm{U})=1$, then, as in the previous example, U is a line through the origin. Otherwise $\operatorname{dim}(\mathrm{U})=2$, and U has a basis consisting of two linearly independent vectors, say $\vec{u}$ and $\vec{v}$. Thus $U=\operatorname{span}\{\vec{u}, \vec{v}\}$, and hence is a plane through the origin.

